{"title":"关于排列的r-Euler-Mahonian统计","authors":"Shao-Hua Liu","doi":"10.1016/j.jcta.2024.105940","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>r</mi><mtext>des</mtext></math></span> and <span><math><mi>r</mi><mtext>exc</mtext></math></span> denote the permutation statistics <em>r</em>-descent number and <em>r</em>-excedance number, respectively. We prove that the pairs of permutation statistics <span><math><mo>(</mo><mi>r</mi><mtext>des</mtext><mo>,</mo><mi>r</mi><mtext>maj</mtext><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>r</mi><mtext>exc</mtext><mo>,</mo><mi>r</mi><mtext>den</mtext><mo>)</mo></math></span> are equidistributed, where <span><math><mi>r</mi><mtext>maj</mtext></math></span> denotes the <em>r</em>-major index defined by Don Rawlings and <span><math><mi>r</mi><mtext>den</mtext></math></span> denotes the <em>r</em>-Denert's statistic defined by Guo-Niu Han. When <span><math><mi>r</mi><mo>=</mo><mn>1</mn></math></span>, this result reduces to the equidistribution of <span><math><mo>(</mo><mtext>des</mtext><mo>,</mo><mtext>maj</mtext><mo>)</mo></math></span> and <span><math><mo>(</mo><mtext>exc</mtext><mo>,</mo><mtext>den</mtext><mo>)</mo></math></span>, which was conjectured by Denert in 1990 and proved that same year by Foata and Zeilberger. We call a pair of permutation statistics that is equidistributed with <span><math><mo>(</mo><mi>r</mi><mtext>des</mtext><mo>,</mo><mi>r</mi><mtext>maj</mtext><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>r</mi><mtext>exc</mtext><mo>,</mo><mi>r</mi><mtext>den</mtext><mo>)</mo></math></span> an <em>r</em>-Euler-Mahonian statistic, which reduces to the classical Euler-Mahonian statistic when <span><math><mi>r</mi><mo>=</mo><mn>1</mn></math></span>.</p><p>We then introduce the notions of <em>r</em>-level descent number, <em>r</em>-level excedance number, <em>r</em>-level major index, and <em>r</em>-level Denert's statistic, denoted by <span><math><msub><mrow><mtext>des</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>exc</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>maj</mtext></mrow><mrow><mi>r</mi></mrow></msub></math></span>, and <span><math><msub><mrow><mtext>den</mtext></mrow><mrow><mi>r</mi></mrow></msub></math></span>, respectively. We prove that <span><math><mo>(</mo><msub><mrow><mtext>des</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>maj</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></math></span> is <em>r</em>-Euler-Mahonian and conjecture that <span><math><mo>(</mo><msub><mrow><mtext>exc</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>den</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></math></span> is <em>r</em>-Euler-Mahonian. Furthermore, we give an extension of the above result and conjecture.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105940"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"r-Euler-Mahonian statistics on permutations\",\"authors\":\"Shao-Hua Liu\",\"doi\":\"10.1016/j.jcta.2024.105940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>r</mi><mtext>des</mtext></math></span> and <span><math><mi>r</mi><mtext>exc</mtext></math></span> denote the permutation statistics <em>r</em>-descent number and <em>r</em>-excedance number, respectively. We prove that the pairs of permutation statistics <span><math><mo>(</mo><mi>r</mi><mtext>des</mtext><mo>,</mo><mi>r</mi><mtext>maj</mtext><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>r</mi><mtext>exc</mtext><mo>,</mo><mi>r</mi><mtext>den</mtext><mo>)</mo></math></span> are equidistributed, where <span><math><mi>r</mi><mtext>maj</mtext></math></span> denotes the <em>r</em>-major index defined by Don Rawlings and <span><math><mi>r</mi><mtext>den</mtext></math></span> denotes the <em>r</em>-Denert's statistic defined by Guo-Niu Han. When <span><math><mi>r</mi><mo>=</mo><mn>1</mn></math></span>, this result reduces to the equidistribution of <span><math><mo>(</mo><mtext>des</mtext><mo>,</mo><mtext>maj</mtext><mo>)</mo></math></span> and <span><math><mo>(</mo><mtext>exc</mtext><mo>,</mo><mtext>den</mtext><mo>)</mo></math></span>, which was conjectured by Denert in 1990 and proved that same year by Foata and Zeilberger. We call a pair of permutation statistics that is equidistributed with <span><math><mo>(</mo><mi>r</mi><mtext>des</mtext><mo>,</mo><mi>r</mi><mtext>maj</mtext><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>r</mi><mtext>exc</mtext><mo>,</mo><mi>r</mi><mtext>den</mtext><mo>)</mo></math></span> an <em>r</em>-Euler-Mahonian statistic, which reduces to the classical Euler-Mahonian statistic when <span><math><mi>r</mi><mo>=</mo><mn>1</mn></math></span>.</p><p>We then introduce the notions of <em>r</em>-level descent number, <em>r</em>-level excedance number, <em>r</em>-level major index, and <em>r</em>-level Denert's statistic, denoted by <span><math><msub><mrow><mtext>des</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>exc</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>maj</mtext></mrow><mrow><mi>r</mi></mrow></msub></math></span>, and <span><math><msub><mrow><mtext>den</mtext></mrow><mrow><mi>r</mi></mrow></msub></math></span>, respectively. We prove that <span><math><mo>(</mo><msub><mrow><mtext>des</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>maj</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></math></span> is <em>r</em>-Euler-Mahonian and conjecture that <span><math><mo>(</mo><msub><mrow><mtext>exc</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mtext>den</mtext></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></math></span> is <em>r</em>-Euler-Mahonian. Furthermore, we give an extension of the above result and conjecture.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"208 \",\"pages\":\"Article 105940\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000797\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000797","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 rdes 和 rexc 分别表示置换统计的 r 后裔数和 r 前裔数。我们证明成对的置换统计量 (rdes,rmaj) 和 (rexc,rden) 是等分布的,其中 rmaj 表示 Don Rawlings 定义的 r Major 指数,rden 表示 Guo-Niu Han 定义的 r-Denert 统计量。当 r=1 时,这一结果简化为(des,maj)和(exc,den)的等分布,这是 Denert 在 1990 年提出的猜想,同年由 Foata 和 Zeilberger 证明。我们称一对与(rdes,rmaj)和(rexc,rden)等分布的置换统计量为r-Euler-Mahonian统计量,当r=1时,它简化为经典的Euler-Mahonian统计量。然后,我们引入r级下降数、r级切除数、r级主要指数和r级Denert统计量的概念,分别用desr,excr,majr和denr表示。我们证明(desr,majr)是r-Euler-Mahonian,并猜想(excr,denr)是r-Euler-Mahonian。此外,我们还给出了上述结果和猜想的扩展。
Let and denote the permutation statistics r-descent number and r-excedance number, respectively. We prove that the pairs of permutation statistics and are equidistributed, where denotes the r-major index defined by Don Rawlings and denotes the r-Denert's statistic defined by Guo-Niu Han. When , this result reduces to the equidistribution of and , which was conjectured by Denert in 1990 and proved that same year by Foata and Zeilberger. We call a pair of permutation statistics that is equidistributed with and an r-Euler-Mahonian statistic, which reduces to the classical Euler-Mahonian statistic when .
We then introduce the notions of r-level descent number, r-level excedance number, r-level major index, and r-level Denert's statistic, denoted by , and , respectively. We prove that is r-Euler-Mahonian and conjecture that is r-Euler-Mahonian. Furthermore, we give an extension of the above result and conjecture.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.