{"title":"五角数列的正数和尾数","authors":"Nian Hong Zhou","doi":"10.1016/j.jcta.2024.105933","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we refine a result of Andrews and Merca on truncated pentagonal number series. Subsequently, we establish some positivity results involving Andrews–Gordon–Bressoud identities and <em>d</em>-regular partitions. In particular, we prove several conjectures of Merca and Krattenthaler–Merca–Radu on truncated pentagonal number series.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105933"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positivity and tails of pentagonal number series\",\"authors\":\"Nian Hong Zhou\",\"doi\":\"10.1016/j.jcta.2024.105933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we refine a result of Andrews and Merca on truncated pentagonal number series. Subsequently, we establish some positivity results involving Andrews–Gordon–Bressoud identities and <em>d</em>-regular partitions. In particular, we prove several conjectures of Merca and Krattenthaler–Merca–Radu on truncated pentagonal number series.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"208 \",\"pages\":\"Article 105933\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000724\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000724","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们完善了安德鲁斯和梅尔卡关于截断五角数列的一个结果。随后,我们建立了一些涉及安德鲁斯-戈登-布列苏德同位式和 d 不规则分区的实在性结果。特别是,我们证明了 Merca 和 Krattenthaler-Merca-Radu 关于截断五角数列的几个猜想。
In this paper, we refine a result of Andrews and Merca on truncated pentagonal number series. Subsequently, we establish some positivity results involving Andrews–Gordon–Bressoud identities and d-regular partitions. In particular, we prove several conjectures of Merca and Krattenthaler–Merca–Radu on truncated pentagonal number series.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.