q 系列的一些展开公式及其应用

IF 0.9 2区 数学 Q2 MATHEMATICS
Bing He, Suzhen Wen
{"title":"q 系列的一些展开公式及其应用","authors":"Bing He,&nbsp;Suzhen Wen","doi":"10.1016/j.jcta.2024.105941","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish some general expansion formulas for <em>q</em>-series. Three of Liu's identities motivate us to search and find such type of formulas. These expansion formulas include as special cases or limiting cases many <em>q</em>-identities including the <em>q</em>-Gauss summation formula, the <em>q</em>-Pfaff-Saalschütz summation formula, three of Jackson's transformation formulas and Sears' terminating <span><math><mmultiscripts><mrow><mi>ϕ</mi></mrow><mrow><mn>3</mn></mrow><none></none><mprescripts></mprescripts><mrow><mn>4</mn></mrow><none></none></mmultiscripts></math></span> transformation formula. As applications, we provide a new proof of the orthogonality relation for continuous dual <em>q</em>-Hahn polynomials, establish some generating functions for special values of the Dirichlet <em>L</em>-functions and the Hurwitz zeta functions, give extensions of three of Liu's identities, establish an extension of Dilcher's identity, and deduce various double Rogers-Ramanujan type identities.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105941"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000803/pdfft?md5=d91a5172bf5711eb304237933cd5055a&pid=1-s2.0-S0097316524000803-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Some expansion formulas for q-series and their applications\",\"authors\":\"Bing He,&nbsp;Suzhen Wen\",\"doi\":\"10.1016/j.jcta.2024.105941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we establish some general expansion formulas for <em>q</em>-series. Three of Liu's identities motivate us to search and find such type of formulas. These expansion formulas include as special cases or limiting cases many <em>q</em>-identities including the <em>q</em>-Gauss summation formula, the <em>q</em>-Pfaff-Saalschütz summation formula, three of Jackson's transformation formulas and Sears' terminating <span><math><mmultiscripts><mrow><mi>ϕ</mi></mrow><mrow><mn>3</mn></mrow><none></none><mprescripts></mprescripts><mrow><mn>4</mn></mrow><none></none></mmultiscripts></math></span> transformation formula. As applications, we provide a new proof of the orthogonality relation for continuous dual <em>q</em>-Hahn polynomials, establish some generating functions for special values of the Dirichlet <em>L</em>-functions and the Hurwitz zeta functions, give extensions of three of Liu's identities, establish an extension of Dilcher's identity, and deduce various double Rogers-Ramanujan type identities.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"209 \",\"pages\":\"Article 105941\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000803/pdfft?md5=d91a5172bf5711eb304237933cd5055a&pid=1-s2.0-S0097316524000803-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000803\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000803","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了一些 q 序列的一般展开公式。刘氏的三个等式促使我们寻找这类公式。这些扩展公式包括 q 高斯求和公式、q-Pfaff-Saalschütz 求和公式、杰克逊的三个变换公式和西尔斯的终止 ϕ34 变换公式等许多 q 常项的特例或极限例。作为应用,我们为连续对偶 q-Hahn 多项式的正交关系提供了新的证明,为 Dirichlet L 函数和 Hurwitz zeta 函数的特殊值建立了一些生成函数,给出了刘氏三个等式的扩展,建立了 Dilcher 等式的扩展,并推导出了各种双罗杰斯-拉曼努扬式等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some expansion formulas for q-series and their applications

In this paper, we establish some general expansion formulas for q-series. Three of Liu's identities motivate us to search and find such type of formulas. These expansion formulas include as special cases or limiting cases many q-identities including the q-Gauss summation formula, the q-Pfaff-Saalschütz summation formula, three of Jackson's transformation formulas and Sears' terminating ϕ34 transformation formula. As applications, we provide a new proof of the orthogonality relation for continuous dual q-Hahn polynomials, establish some generating functions for special values of the Dirichlet L-functions and the Hurwitz zeta functions, give extensions of three of Liu's identities, establish an extension of Dilcher's identity, and deduce various double Rogers-Ramanujan type identities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信