Rigoberto Flórez , José L. Ramírez , Diego Villamizar
{"title":"Restricted bargraphs and unimodal compositions","authors":"Rigoberto Flórez , José L. Ramírez , Diego Villamizar","doi":"10.1016/j.jcta.2024.105934","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a study on <em>polyominoes</em>, which are polygons created by connecting unit squares along their edges. Specifically, we focus on a related concept called a <em>bargraph</em>, which is a path on a lattice in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub><mo>×</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub></math></span> traced along the boundaries of a column convex polyomino where the lower edge is on the <em>x</em>-axis. To explore new variations of bargraphs, we introduce the notion of <em>non-decreasing bargraphs</em>, which incorporate an additional restriction concerning the valleys within the path. We establish intriguing connections between these novel objects and unimodal compositions. To facilitate our analysis, we employ generating functions, including <em>q</em>-series, as well as various closed formulas. These tools enable us to enumerate the different types of bargraphs based on their semi-perimeter, area, and the number of peaks. Furthermore, we provide combinatorial justifications for some of the derived closed formulas.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105934"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000736/pdfft?md5=f5366b9dc5560c0148e0644514e1990d&pid=1-s2.0-S0097316524000736-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000736","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a study on polyominoes, which are polygons created by connecting unit squares along their edges. Specifically, we focus on a related concept called a bargraph, which is a path on a lattice in traced along the boundaries of a column convex polyomino where the lower edge is on the x-axis. To explore new variations of bargraphs, we introduce the notion of non-decreasing bargraphs, which incorporate an additional restriction concerning the valleys within the path. We establish intriguing connections between these novel objects and unimodal compositions. To facilitate our analysis, we employ generating functions, including q-series, as well as various closed formulas. These tools enable us to enumerate the different types of bargraphs based on their semi-perimeter, area, and the number of peaks. Furthermore, we provide combinatorial justifications for some of the derived closed formulas.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.