{"title":"Cluster braid groups of Coxeter-Dynkin diagrams","authors":"Zhe Han , Ping He , Yu Qiu","doi":"10.1016/j.jcta.2024.105935","DOIUrl":null,"url":null,"abstract":"<div><p>Cluster exchange groupoids are introduced by King-Qiu as an enhancement of cluster exchange graphs to study stability conditions and quadratic differentials. In this paper, we introduce the cluster exchange groupoid for any finite Coxeter-Dynkin diagram Δ and show that its fundamental group is isomorphic to the corresponding braid group associated with Δ.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105935"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000748","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cluster exchange groupoids are introduced by King-Qiu as an enhancement of cluster exchange graphs to study stability conditions and quadratic differentials. In this paper, we introduce the cluster exchange groupoid for any finite Coxeter-Dynkin diagram Δ and show that its fundamental group is isomorphic to the corresponding braid group associated with Δ.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.