q-Onsager 代数和量子环

IF 0.9 2区 数学 Q2 MATHEMATICS
Owen Goff
{"title":"q-Onsager 代数和量子环","authors":"Owen Goff","doi":"10.1016/j.jcta.2024.105939","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>q</em>-Onsager algebra, denoted <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, is defined by two generators <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and two relations called the <em>q</em>-Dolan-Grady relations. Recently, Terwilliger introduced some elements of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, said to be alternating. These elements are denoted<span><span><span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>W</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mo>{</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mo>{</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mo>{</mo><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>.</mo></math></span></span></span></p><p>The alternating elements of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are defined recursively. By construction, they are polynomials in <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. It is currently unknown how to express these polynomials in closed form.</p><p>In this paper, we consider an algebra <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, called the quantum torus. We present a basis for <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and define an algebra homomorphism <span><math><mi>p</mi><mo>:</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>↦</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In our main result, we express the <em>p</em>-images of the alternating elements of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> in the basis for <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. These expressions are in a closed form that we find attractive.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105939"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The q-Onsager algebra and the quantum torus\",\"authors\":\"Owen Goff\",\"doi\":\"10.1016/j.jcta.2024.105939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>q</em>-Onsager algebra, denoted <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, is defined by two generators <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and two relations called the <em>q</em>-Dolan-Grady relations. Recently, Terwilliger introduced some elements of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, said to be alternating. These elements are denoted<span><span><span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>W</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mo>{</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mo>{</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mo>{</mo><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>.</mo></math></span></span></span></p><p>The alternating elements of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are defined recursively. By construction, they are polynomials in <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. It is currently unknown how to express these polynomials in closed form.</p><p>In this paper, we consider an algebra <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, called the quantum torus. We present a basis for <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and define an algebra homomorphism <span><math><mi>p</mi><mo>:</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>↦</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In our main result, we express the <em>p</em>-images of the alternating elements of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> in the basis for <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. These expressions are in a closed form that we find attractive.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"208 \",\"pages\":\"Article 105939\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000785\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000785","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

q-Onsager 代数(记为 Oq)由两个发电机 W0、W1 和两个称为 q-Dolan-Grady 关系的关系定义。最近,特尔维利格引入了 Oq 的一些元素,称其为交替元素。这些元素分别表示为{W-k}k=0∞,{Wk+1}k=0∞,{Gk+1}k=0∞,{G˜k+1}k=0∞。根据构造,它们是 W0 和 W1 中的多项式。目前还不知道如何以封闭形式表达这些多项式。在本文中,我们考虑了一个被称为量子环的代数 Tq。我们提出了 Tq 的基础,并定义了代数同态 p:Oq↦Tq。在我们的主要结果中,我们在 Tq 的基础上表达了 Oq 交替元素的 p 图像。这些表达式是封闭的,我们认为很有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The q-Onsager algebra and the quantum torus

The q-Onsager algebra, denoted Oq, is defined by two generators W0,W1 and two relations called the q-Dolan-Grady relations. Recently, Terwilliger introduced some elements of Oq, said to be alternating. These elements are denoted{Wk}k=0,{Wk+1}k=0,{Gk+1}k=0,{G˜k+1}k=0.

The alternating elements of Oq are defined recursively. By construction, they are polynomials in W0 and W1. It is currently unknown how to express these polynomials in closed form.

In this paper, we consider an algebra Tq, called the quantum torus. We present a basis for Tq and define an algebra homomorphism p:OqTq. In our main result, we express the p-images of the alternating elements of Oq in the basis for Tq. These expressions are in a closed form that we find attractive.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信