通过奇偶封闭行走的幂超图和有符号图谱

IF 0.9 2区 数学 Q2 MATHEMATICS
Lixiang Chen , Edwin R. van Dam , Changjiang Bu
{"title":"通过奇偶封闭行走的幂超图和有符号图谱","authors":"Lixiang Chen ,&nbsp;Edwin R. van Dam ,&nbsp;Changjiang Bu","doi":"10.1016/j.jcta.2024.105909","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>k</em>-power hypergraph <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> is the <em>k</em>-uniform hypergraph that is obtained by adding <span><math><mi>k</mi><mo>−</mo><mn>2</mn></math></span> new vertices to each edge of a graph <em>G</em>, for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. A parity-closed walk in <em>G</em> is a closed walk that uses each edge an even number of times. In an earlier paper, we determined the eigenvalues of the adjacency tensor of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> using the eigenvalues of signed subgraphs of <em>G</em>. Here, we express the entire spectrum (that is, we determine all multiplicities and the characteristic polynomial) of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> in terms of parity-closed walks of <em>G</em>. Moreover, we give an explicit expression for the multiplicity of the spectral radius of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span>. As a side result, we show that the number of parity-closed walks of given length is the corresponding spectral moment averaged over all signed graphs with underlying graph <em>G</em>. By extrapolating the characteristic polynomial of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> to <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, we introduce a pseudo-characteristic function which is shown to be the geometric mean of the characteristic polynomials of all signed graphs on <em>G</em>. This supplements a result by Godsil and Gutman that the arithmetic mean of the characteristic polynomials of all signed graphs on <em>G</em> equals the matching polynomial of <em>G</em>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105909"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectra of power hypergraphs and signed graphs via parity-closed walks\",\"authors\":\"Lixiang Chen ,&nbsp;Edwin R. van Dam ,&nbsp;Changjiang Bu\",\"doi\":\"10.1016/j.jcta.2024.105909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>k</em>-power hypergraph <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> is the <em>k</em>-uniform hypergraph that is obtained by adding <span><math><mi>k</mi><mo>−</mo><mn>2</mn></math></span> new vertices to each edge of a graph <em>G</em>, for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. A parity-closed walk in <em>G</em> is a closed walk that uses each edge an even number of times. In an earlier paper, we determined the eigenvalues of the adjacency tensor of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> using the eigenvalues of signed subgraphs of <em>G</em>. Here, we express the entire spectrum (that is, we determine all multiplicities and the characteristic polynomial) of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> in terms of parity-closed walks of <em>G</em>. Moreover, we give an explicit expression for the multiplicity of the spectral radius of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span>. As a side result, we show that the number of parity-closed walks of given length is the corresponding spectral moment averaged over all signed graphs with underlying graph <em>G</em>. By extrapolating the characteristic polynomial of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> to <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, we introduce a pseudo-characteristic function which is shown to be the geometric mean of the characteristic polynomials of all signed graphs on <em>G</em>. This supplements a result by Godsil and Gutman that the arithmetic mean of the characteristic polynomials of all signed graphs on <em>G</em> equals the matching polynomial of <em>G</em>.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"207 \",\"pages\":\"Article 105909\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000487\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000487","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

k-power 超图 G(k) 是在图 G 的每条边上添加 k-2 个新顶点而得到的 k-Uniform 超图,k≥3。G 中的奇偶封闭走行是指每条边使用偶数次的封闭走行。在早先的一篇论文中,我们利用 G 的有符号子图的特征值确定了 G(k) 的邻接张量的特征值。在这里,我们用 G 的奇偶封闭行走来表达 G(k) 的整个谱(即确定所有乘数和特征多项式)。作为一个附带结果,我们证明了给定长度的奇偶封闭走行的数量就是具有底层图 G 的所有有符号图的平均相应谱矩。通过将 G(k) 的特征多项式外推到 k=2,我们引入了一个伪特征函数,证明它是 G 上所有带符号图的特征多项式的几何平均数。这补充了 Godsil 和 Gutman 的一个结果,即 G 上所有带符号图的特征多项式的算术平均数等于 G 的匹配多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectra of power hypergraphs and signed graphs via parity-closed walks

The k-power hypergraph G(k) is the k-uniform hypergraph that is obtained by adding k2 new vertices to each edge of a graph G, for k3. A parity-closed walk in G is a closed walk that uses each edge an even number of times. In an earlier paper, we determined the eigenvalues of the adjacency tensor of G(k) using the eigenvalues of signed subgraphs of G. Here, we express the entire spectrum (that is, we determine all multiplicities and the characteristic polynomial) of G(k) in terms of parity-closed walks of G. Moreover, we give an explicit expression for the multiplicity of the spectral radius of G(k). As a side result, we show that the number of parity-closed walks of given length is the corresponding spectral moment averaged over all signed graphs with underlying graph G. By extrapolating the characteristic polynomial of G(k) to k=2, we introduce a pseudo-characteristic function which is shown to be the geometric mean of the characteristic polynomials of all signed graphs on G. This supplements a result by Godsil and Gutman that the arithmetic mean of the characteristic polynomials of all signed graphs on G equals the matching polynomial of G.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信