{"title":"通过奇偶封闭行走的幂超图和有符号图谱","authors":"Lixiang Chen , Edwin R. van Dam , Changjiang Bu","doi":"10.1016/j.jcta.2024.105909","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>k</em>-power hypergraph <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> is the <em>k</em>-uniform hypergraph that is obtained by adding <span><math><mi>k</mi><mo>−</mo><mn>2</mn></math></span> new vertices to each edge of a graph <em>G</em>, for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. A parity-closed walk in <em>G</em> is a closed walk that uses each edge an even number of times. In an earlier paper, we determined the eigenvalues of the adjacency tensor of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> using the eigenvalues of signed subgraphs of <em>G</em>. Here, we express the entire spectrum (that is, we determine all multiplicities and the characteristic polynomial) of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> in terms of parity-closed walks of <em>G</em>. Moreover, we give an explicit expression for the multiplicity of the spectral radius of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span>. As a side result, we show that the number of parity-closed walks of given length is the corresponding spectral moment averaged over all signed graphs with underlying graph <em>G</em>. By extrapolating the characteristic polynomial of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> to <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, we introduce a pseudo-characteristic function which is shown to be the geometric mean of the characteristic polynomials of all signed graphs on <em>G</em>. This supplements a result by Godsil and Gutman that the arithmetic mean of the characteristic polynomials of all signed graphs on <em>G</em> equals the matching polynomial of <em>G</em>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105909"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectra of power hypergraphs and signed graphs via parity-closed walks\",\"authors\":\"Lixiang Chen , Edwin R. van Dam , Changjiang Bu\",\"doi\":\"10.1016/j.jcta.2024.105909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>k</em>-power hypergraph <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> is the <em>k</em>-uniform hypergraph that is obtained by adding <span><math><mi>k</mi><mo>−</mo><mn>2</mn></math></span> new vertices to each edge of a graph <em>G</em>, for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. A parity-closed walk in <em>G</em> is a closed walk that uses each edge an even number of times. In an earlier paper, we determined the eigenvalues of the adjacency tensor of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> using the eigenvalues of signed subgraphs of <em>G</em>. Here, we express the entire spectrum (that is, we determine all multiplicities and the characteristic polynomial) of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> in terms of parity-closed walks of <em>G</em>. Moreover, we give an explicit expression for the multiplicity of the spectral radius of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span>. As a side result, we show that the number of parity-closed walks of given length is the corresponding spectral moment averaged over all signed graphs with underlying graph <em>G</em>. By extrapolating the characteristic polynomial of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> to <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, we introduce a pseudo-characteristic function which is shown to be the geometric mean of the characteristic polynomials of all signed graphs on <em>G</em>. This supplements a result by Godsil and Gutman that the arithmetic mean of the characteristic polynomials of all signed graphs on <em>G</em> equals the matching polynomial of <em>G</em>.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"207 \",\"pages\":\"Article 105909\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000487\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000487","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
k-power 超图 G(k) 是在图 G 的每条边上添加 k-2 个新顶点而得到的 k-Uniform 超图,k≥3。G 中的奇偶封闭走行是指每条边使用偶数次的封闭走行。在早先的一篇论文中,我们利用 G 的有符号子图的特征值确定了 G(k) 的邻接张量的特征值。在这里,我们用 G 的奇偶封闭行走来表达 G(k) 的整个谱(即确定所有乘数和特征多项式)。作为一个附带结果,我们证明了给定长度的奇偶封闭走行的数量就是具有底层图 G 的所有有符号图的平均相应谱矩。通过将 G(k) 的特征多项式外推到 k=2,我们引入了一个伪特征函数,证明它是 G 上所有带符号图的特征多项式的几何平均数。这补充了 Godsil 和 Gutman 的一个结果,即 G 上所有带符号图的特征多项式的算术平均数等于 G 的匹配多项式。
Spectra of power hypergraphs and signed graphs via parity-closed walks
The k-power hypergraph is the k-uniform hypergraph that is obtained by adding new vertices to each edge of a graph G, for . A parity-closed walk in G is a closed walk that uses each edge an even number of times. In an earlier paper, we determined the eigenvalues of the adjacency tensor of using the eigenvalues of signed subgraphs of G. Here, we express the entire spectrum (that is, we determine all multiplicities and the characteristic polynomial) of in terms of parity-closed walks of G. Moreover, we give an explicit expression for the multiplicity of the spectral radius of . As a side result, we show that the number of parity-closed walks of given length is the corresponding spectral moment averaged over all signed graphs with underlying graph G. By extrapolating the characteristic polynomial of to , we introduce a pseudo-characteristic function which is shown to be the geometric mean of the characteristic polynomials of all signed graphs on G. This supplements a result by Godsil and Gutman that the arithmetic mean of the characteristic polynomials of all signed graphs on G equals the matching polynomial of G.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.