最小一般二面群编码等价类的枚举

IF 0.9 2区 数学 Q2 MATHEMATICS
Boheng Huang
{"title":"最小一般二面群编码等价类的枚举","authors":"Boheng Huang","doi":"10.1016/j.jcta.2024.105906","DOIUrl":null,"url":null,"abstract":"<div><p>A group code is a linear code which can be realized as a two-sided ideal of a group algebra over a finite field. When the characteristic of the field is prime to the order of the group, we will give explicit expressions for primitive central idempotents in the group algebra, which enables us to determine the number of equivalent classes of minimal group codes. Then, we apply our formula to calculate the number of equivalent classes of minimal general dihedral group codes.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105906"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The enumeration of equivalent classes of minimal general dihedral group codes\",\"authors\":\"Boheng Huang\",\"doi\":\"10.1016/j.jcta.2024.105906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A group code is a linear code which can be realized as a two-sided ideal of a group algebra over a finite field. When the characteristic of the field is prime to the order of the group, we will give explicit expressions for primitive central idempotents in the group algebra, which enables us to determine the number of equivalent classes of minimal group codes. Then, we apply our formula to calculate the number of equivalent classes of minimal general dihedral group codes.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"206 \",\"pages\":\"Article 105906\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000451\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000451","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

群码是一种线性码,可以作为有限域上的群代数的双面理想来实现。当场的特征是群的阶的素数时,我们将给出群代数中原始中心幂的明确表达式,这使我们能够确定最小群码的等价类数。然后,我们将应用我们的公式计算最小一般二面体群码的等价类数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The enumeration of equivalent classes of minimal general dihedral group codes

A group code is a linear code which can be realized as a two-sided ideal of a group algebra over a finite field. When the characteristic of the field is prime to the order of the group, we will give explicit expressions for primitive central idempotents in the group algebra, which enables us to determine the number of equivalent classes of minimal group codes. Then, we apply our formula to calculate the number of equivalent classes of minimal general dihedral group codes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信