K2n,2n的边缘-参数2-弧-传递盖的特性描述

IF 0.9 2区 数学 Q2 MATHEMATICS
Daniel R. Hawtin , Cheryl E. Praeger , Jin-Xin Zhou
{"title":"K2n,2n的边缘-参数2-弧-传递盖的特性描述","authors":"Daniel R. Hawtin ,&nbsp;Cheryl E. Praeger ,&nbsp;Jin-Xin Zhou","doi":"10.1016/j.jcta.2024.105919","DOIUrl":null,"url":null,"abstract":"<div><p>The family of finite 2-arc-transitive graphs of a given valency is closed under forming non-trivial <em>normal quotients</em>, and graphs in this family having no non-trivial normal quotient are called ‘basic’. To date, the vast majority of work in the literature has focused on classifying these ‘basic’ graphs. By contrast we give here a characterisation of the normal covers of the ‘basic’ 2-arc-transitive graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. The characterisation identified the special role of graphs associated with a subgroup of automorphisms called an <em>n-dimensional mixed dihedral group</em>. This is a group <em>H</em> with two subgroups <em>X</em> and <em>Y</em>, each elementary abelian of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>, such that <span><math><mi>X</mi><mo>∩</mo><mi>Y</mi><mo>=</mo><mn>1</mn></math></span>, <em>H</em> is generated by <span><math><mi>X</mi><mo>∪</mo><mi>Y</mi></math></span>, and <span><math><mi>H</mi><mo>/</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≅</mo><mi>X</mi><mo>×</mo><mi>Y</mi></math></span>.</p><p>Our characterisation shows that each 2-arc-transitive normal cover of <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> is either itself a Cayley graph, or is the line graph of a Cayley graph of an <em>n</em>-dimensional mixed dihedral group. In the latter case, we show that the 2-arc-transitive group acting on the normal cover of <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> induces an <em>edge-affine</em> action on <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> (and we show that such actions are one of just four possible types of 2-arc-transitive actions on <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>). As a partial converse, we provide a graph theoretic characterisation of <em>n</em>-dimensional mixed dihedral groups, and finally, for each <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, we give an explicit construction of an <em>n</em>-dimensional mixed dihedral group which is a 2-group of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msup></math></span>, and a corresponding 2-arc-transitive normal cover of 2-power order of <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>. Note that these results partially address a problem proposed by Caiheng Li concerning normal covers of prime power order of the ‘basic’ 2-arc-transitive graphs.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105919"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterisation of edge-affine 2-arc-transitive covers of K2n,2n\",\"authors\":\"Daniel R. Hawtin ,&nbsp;Cheryl E. Praeger ,&nbsp;Jin-Xin Zhou\",\"doi\":\"10.1016/j.jcta.2024.105919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The family of finite 2-arc-transitive graphs of a given valency is closed under forming non-trivial <em>normal quotients</em>, and graphs in this family having no non-trivial normal quotient are called ‘basic’. To date, the vast majority of work in the literature has focused on classifying these ‘basic’ graphs. By contrast we give here a characterisation of the normal covers of the ‘basic’ 2-arc-transitive graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. The characterisation identified the special role of graphs associated with a subgroup of automorphisms called an <em>n-dimensional mixed dihedral group</em>. This is a group <em>H</em> with two subgroups <em>X</em> and <em>Y</em>, each elementary abelian of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>, such that <span><math><mi>X</mi><mo>∩</mo><mi>Y</mi><mo>=</mo><mn>1</mn></math></span>, <em>H</em> is generated by <span><math><mi>X</mi><mo>∪</mo><mi>Y</mi></math></span>, and <span><math><mi>H</mi><mo>/</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≅</mo><mi>X</mi><mo>×</mo><mi>Y</mi></math></span>.</p><p>Our characterisation shows that each 2-arc-transitive normal cover of <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> is either itself a Cayley graph, or is the line graph of a Cayley graph of an <em>n</em>-dimensional mixed dihedral group. In the latter case, we show that the 2-arc-transitive group acting on the normal cover of <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> induces an <em>edge-affine</em> action on <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> (and we show that such actions are one of just four possible types of 2-arc-transitive actions on <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>). As a partial converse, we provide a graph theoretic characterisation of <em>n</em>-dimensional mixed dihedral groups, and finally, for each <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, we give an explicit construction of an <em>n</em>-dimensional mixed dihedral group which is a 2-group of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msup></math></span>, and a corresponding 2-arc-transitive normal cover of 2-power order of <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>. Note that these results partially address a problem proposed by Caiheng Li concerning normal covers of prime power order of the ‘basic’ 2-arc-transitive graphs.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"207 \",\"pages\":\"Article 105919\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009731652400058X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652400058X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定化合价的有限二弧遍历图系在形成非三维正商时是封闭的,这个系中没有非三维正商的图被称为 "基本 "图。迄今为止,文献中的绝大多数工作都集中在对这些 "基本 "图的分类上。相比之下,我们在此给出了 n≥2 时 "基本 "2-弧-传递图 K2n,2n 的法向盖的特征。该特征描述确定了与一个称为 n 维混合二面群的自动群子群相关联的图形的特殊作用。这是一个具有两个子群 X 和 Y 的群 H,每个子群都是阶数为 2n 的初等无差别群,使得 X∩Y=1, H 由 X∪Y 生成,并且 H/H′≅X×Y.我们的特征描述表明,K2n,2n 的每个 2 弧传正则盖要么本身就是一个 Cayley 图,要么就是一个 n 维混合二面群的 Cayley 图的线图。在后一种情况下,我们证明了作用于 K2n,2n 的法向盖上的 2-arc-transitive 群会在 K2n,2n 上诱导出一个边缘-正方形作用(我们还证明了这种作用是 K2n,2n 上四种可能的 2-arc-transitive 作用之一)。作为部分反证,我们提供了 n 维混合二面群的图论特征,最后,对于每个 n≥2,我们给出了一个 n 维混合二面群的明确构造,它是一个阶为 2n2+2n 的 2 群,以及一个相应的 K2n,2n 的 2 幂阶的 2-弧遍历法盖。请注意,这些结果部分地解决了李才恒提出的关于 "基本 "2-弧传图的素幂级数法向盖的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterisation of edge-affine 2-arc-transitive covers of K2n,2n

The family of finite 2-arc-transitive graphs of a given valency is closed under forming non-trivial normal quotients, and graphs in this family having no non-trivial normal quotient are called ‘basic’. To date, the vast majority of work in the literature has focused on classifying these ‘basic’ graphs. By contrast we give here a characterisation of the normal covers of the ‘basic’ 2-arc-transitive graphs K2n,2n for n2. The characterisation identified the special role of graphs associated with a subgroup of automorphisms called an n-dimensional mixed dihedral group. This is a group H with two subgroups X and Y, each elementary abelian of order 2n, such that XY=1, H is generated by XY, and H/HX×Y.

Our characterisation shows that each 2-arc-transitive normal cover of K2n,2n is either itself a Cayley graph, or is the line graph of a Cayley graph of an n-dimensional mixed dihedral group. In the latter case, we show that the 2-arc-transitive group acting on the normal cover of K2n,2n induces an edge-affine action on K2n,2n (and we show that such actions are one of just four possible types of 2-arc-transitive actions on K2n,2n). As a partial converse, we provide a graph theoretic characterisation of n-dimensional mixed dihedral groups, and finally, for each n2, we give an explicit construction of an n-dimensional mixed dihedral group which is a 2-group of order 2n2+2n, and a corresponding 2-arc-transitive normal cover of 2-power order of K2n,2n. Note that these results partially address a problem proposed by Caiheng Li concerning normal covers of prime power order of the ‘basic’ 2-arc-transitive graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信