{"title":"Power-free complementary binary morphisms","authors":"Jeffrey Shallit , Arseny Shur , Stefan Zorcic","doi":"10.1016/j.jcta.2024.105910","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the topic of power-free morphisms, focusing on the properties of the class of complementary morphisms. Such morphisms are defined over a 2-letter alphabet, and map the letters 0 and 1 to complementary words. We prove that every prefix of the famous Thue–Morse word <strong>t</strong> gives a complementary morphism that is <span><math><msup><mrow><mn>3</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>-free and hence <em>α</em>-free for every real number <span><math><mi>α</mi><mo>></mo><mn>3</mn></math></span>. We also describe, using a 4-state binary finite automaton, the lengths of all prefixes of <strong>t</strong> that give cubefree complementary morphisms. Next, we show that 3-free (cubefree) complementary morphisms of length <em>k</em> exist for all <span><math><mi>k</mi><mo>∉</mo><mo>{</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>}</mo></math></span>. Moreover, if <em>k</em> is not of the form <span><math><mn>3</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>, then the images of letters can be chosen to be factors of <strong>t</strong>. Finally, we observe that each cubefree complementary morphism is also <em>α</em>-free for some <span><math><mi>α</mi><mo><</mo><mn>3</mn></math></span>; in contrast, no binary morphism that maps each letter to a word of length 3 (resp., a word of length 6) is <em>α</em>-free for any <span><math><mi>α</mi><mo><</mo><mn>3</mn></math></span>.</p><p>In addition to more traditional techniques of combinatorics on words, we also rely on the Walnut theorem-prover. Its use and limitations are discussed.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We revisit the topic of power-free morphisms, focusing on the properties of the class of complementary morphisms. Such morphisms are defined over a 2-letter alphabet, and map the letters 0 and 1 to complementary words. We prove that every prefix of the famous Thue–Morse word t gives a complementary morphism that is -free and hence α-free for every real number . We also describe, using a 4-state binary finite automaton, the lengths of all prefixes of t that give cubefree complementary morphisms. Next, we show that 3-free (cubefree) complementary morphisms of length k exist for all . Moreover, if k is not of the form , then the images of letters can be chosen to be factors of t. Finally, we observe that each cubefree complementary morphism is also α-free for some ; in contrast, no binary morphism that maps each letter to a word of length 3 (resp., a word of length 6) is α-free for any .
In addition to more traditional techniques of combinatorics on words, we also rely on the Walnut theorem-prover. Its use and limitations are discussed.