Power-free complementary binary morphisms

Pub Date : 2024-05-22 DOI:10.1016/j.jcta.2024.105910
Jeffrey Shallit , Arseny Shur , Stefan Zorcic
{"title":"Power-free complementary binary morphisms","authors":"Jeffrey Shallit ,&nbsp;Arseny Shur ,&nbsp;Stefan Zorcic","doi":"10.1016/j.jcta.2024.105910","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the topic of power-free morphisms, focusing on the properties of the class of complementary morphisms. Such morphisms are defined over a 2-letter alphabet, and map the letters 0 and 1 to complementary words. We prove that every prefix of the famous Thue–Morse word <strong>t</strong> gives a complementary morphism that is <span><math><msup><mrow><mn>3</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>-free and hence <em>α</em>-free for every real number <span><math><mi>α</mi><mo>&gt;</mo><mn>3</mn></math></span>. We also describe, using a 4-state binary finite automaton, the lengths of all prefixes of <strong>t</strong> that give cubefree complementary morphisms. Next, we show that 3-free (cubefree) complementary morphisms of length <em>k</em> exist for all <span><math><mi>k</mi><mo>∉</mo><mo>{</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>}</mo></math></span>. Moreover, if <em>k</em> is not of the form <span><math><mn>3</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>, then the images of letters can be chosen to be factors of <strong>t</strong>. Finally, we observe that each cubefree complementary morphism is also <em>α</em>-free for some <span><math><mi>α</mi><mo>&lt;</mo><mn>3</mn></math></span>; in contrast, no binary morphism that maps each letter to a word of length 3 (resp., a word of length 6) is <em>α</em>-free for any <span><math><mi>α</mi><mo>&lt;</mo><mn>3</mn></math></span>.</p><p>In addition to more traditional techniques of combinatorics on words, we also rely on the Walnut theorem-prover. Its use and limitations are discussed.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit the topic of power-free morphisms, focusing on the properties of the class of complementary morphisms. Such morphisms are defined over a 2-letter alphabet, and map the letters 0 and 1 to complementary words. We prove that every prefix of the famous Thue–Morse word t gives a complementary morphism that is 3+-free and hence α-free for every real number α>3. We also describe, using a 4-state binary finite automaton, the lengths of all prefixes of t that give cubefree complementary morphisms. Next, we show that 3-free (cubefree) complementary morphisms of length k exist for all k{3,6}. Moreover, if k is not of the form 32n, then the images of letters can be chosen to be factors of t. Finally, we observe that each cubefree complementary morphism is also α-free for some α<3; in contrast, no binary morphism that maps each letter to a word of length 3 (resp., a word of length 6) is α-free for any α<3.

In addition to more traditional techniques of combinatorics on words, we also rely on the Walnut theorem-prover. Its use and limitations are discussed.

分享
查看原文
无幂次互补二元态式
我们重温了无幂态词的话题,重点研究了互补态词类的性质。这类态式是在 2 个字母的字母表上定义的,并将字母 0 和 1 映射为互补词。我们证明了著名的 Thue-Morse 词 t 的每个前缀给出的互补形态都是无 3+ 的,因此对于每个实数 α>3 都是α-free 的。我们还用一个 4 态二进制有限自动机描述了给出无立方互补形态的 t 的所有前缀的长度。接下来,我们将证明在所有 k∉{3,6}中都存在长度为 k 的无立方(3-free)互补变形。此外,如果 k 不是 3⋅2n 的形式,那么字母的图像可以选择为 t 的因子。最后,我们观察到,对于某个 α<3 来说,每个无立方互补变形也是α-free 的;相反,对于任何 α<3 来说,将每个字母映射到长度为 3 的单词(或者长度为 6 的单词)的二元变形都是α-free 的。我们还讨论了它的使用和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信