麦克唐纳多项式的多参数穆纳汉-中山规则

IF 0.9 2区 数学 Q2 MATHEMATICS
Naihuan Jing , Ning Liu
{"title":"麦克唐纳多项式的多参数穆纳汉-中山规则","authors":"Naihuan Jing ,&nbsp;Ning Liu","doi":"10.1016/j.jcta.2024.105920","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new family of operators as multi-parameter deformation of the one-row Macdonald polynomials. The matrix coefficients of these operators acting on the space of symmetric functions with rational coefficients in two parameters <span><math><mi>q</mi><mo>,</mo><mi>t</mi></math></span> (denoted by <span><math><mi>Λ</mi><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>) are computed by assigning some values to skew Macdonald polynomials in <em>λ</em>-ring notation. The new rule is utilized to provide new iterative formulas and also recover various existing formulas in a unified manner. Specifically the following applications are discussed: (i) A <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Murnaghan-Nakayama rule for Macdonald functions is given as a generalization of the <em>q</em>-Murnaghan-Nakayama rule; (ii) An iterative formula for the <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Green polynomial is deduced; (iii) A simple proof of the Murnaghan-Nakayama rule for the Hecke algebra and the Hecke-Clifford algebra is offered; (iv) A combinatorial inversion of the Pieri rule for Hall-Littlewood functions is derived with the help of the vertex operator realization of the Hall-Littlewood functions; (v) Two iterative formulae for the <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Kostka polynomials <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>λ</mi><mi>μ</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> are obtained from the dual version of our multiparametric Murnaghan-Nakayama rule, one of which yields an explicit formula for arbitrary <em>λ</em> and <em>μ</em> in terms of the generalized <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-binomial coefficient introduced independently by Lassalle and Okounkov.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105920"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiparametric Murnaghan-Nakayama rule for Macdonald polynomials\",\"authors\":\"Naihuan Jing ,&nbsp;Ning Liu\",\"doi\":\"10.1016/j.jcta.2024.105920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a new family of operators as multi-parameter deformation of the one-row Macdonald polynomials. The matrix coefficients of these operators acting on the space of symmetric functions with rational coefficients in two parameters <span><math><mi>q</mi><mo>,</mo><mi>t</mi></math></span> (denoted by <span><math><mi>Λ</mi><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>) are computed by assigning some values to skew Macdonald polynomials in <em>λ</em>-ring notation. The new rule is utilized to provide new iterative formulas and also recover various existing formulas in a unified manner. Specifically the following applications are discussed: (i) A <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Murnaghan-Nakayama rule for Macdonald functions is given as a generalization of the <em>q</em>-Murnaghan-Nakayama rule; (ii) An iterative formula for the <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Green polynomial is deduced; (iii) A simple proof of the Murnaghan-Nakayama rule for the Hecke algebra and the Hecke-Clifford algebra is offered; (iv) A combinatorial inversion of the Pieri rule for Hall-Littlewood functions is derived with the help of the vertex operator realization of the Hall-Littlewood functions; (v) Two iterative formulae for the <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Kostka polynomials <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>λ</mi><mi>μ</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> are obtained from the dual version of our multiparametric Murnaghan-Nakayama rule, one of which yields an explicit formula for arbitrary <em>λ</em> and <em>μ</em> in terms of the generalized <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-binomial coefficient introduced independently by Lassalle and Okounkov.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"207 \",\"pages\":\"Article 105920\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000591\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000591","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一系列新的算子,作为单行麦克唐纳多项式的多参数变形。这些算子作用于两个参数 q,t 中具有有理系数的对称函数空间的矩阵系数(用Λ(q,t)表示),是通过给λ环符号中的偏斜麦克唐纳多项式赋值来计算的。利用新规则可以提供新的迭代公式,并以统一的方式恢复各种现有公式。具体讨论了以下应用:(i) 作为 q-Murnaghan-Nakayama 规则的一般化,给出了 Macdonald 函数的 (q,t)-Murnaghan-Nakayama 规则;(ii) 推导出了 (q,t)-Green 多项式的迭代公式;(iii) 提供了赫克代数和赫克-克利福德代数的 Murnaghan-Nakayama 规则的简单证明; (iv) 借助霍尔-利特尔伍德函数的顶点算子实现,推导出霍尔-利特尔伍德函数的 Pieri 规则的组合反演;(v) 从我们的多参数 Murnaghan-Nakayama 规则的对偶版本得到了 (q,t)-Kostka 多项式 Kλμ(q,t)的两个迭代公式,其中一个公式根据 Lassalle 和 Okounkov 独立引入的广义 (q,t)-binomial 系数得到了任意 λ 和 μ 的明确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiparametric Murnaghan-Nakayama rule for Macdonald polynomials

We introduce a new family of operators as multi-parameter deformation of the one-row Macdonald polynomials. The matrix coefficients of these operators acting on the space of symmetric functions with rational coefficients in two parameters q,t (denoted by Λ(q,t)) are computed by assigning some values to skew Macdonald polynomials in λ-ring notation. The new rule is utilized to provide new iterative formulas and also recover various existing formulas in a unified manner. Specifically the following applications are discussed: (i) A (q,t)-Murnaghan-Nakayama rule for Macdonald functions is given as a generalization of the q-Murnaghan-Nakayama rule; (ii) An iterative formula for the (q,t)-Green polynomial is deduced; (iii) A simple proof of the Murnaghan-Nakayama rule for the Hecke algebra and the Hecke-Clifford algebra is offered; (iv) A combinatorial inversion of the Pieri rule for Hall-Littlewood functions is derived with the help of the vertex operator realization of the Hall-Littlewood functions; (v) Two iterative formulae for the (q,t)-Kostka polynomials Kλμ(q,t) are obtained from the dual version of our multiparametric Murnaghan-Nakayama rule, one of which yields an explicit formula for arbitrary λ and μ in terms of the generalized (q,t)-binomial coefficient introduced independently by Lassalle and Okounkov.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信