{"title":"麦克唐纳多项式的多参数穆纳汉-中山规则","authors":"Naihuan Jing , Ning Liu","doi":"10.1016/j.jcta.2024.105920","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new family of operators as multi-parameter deformation of the one-row Macdonald polynomials. The matrix coefficients of these operators acting on the space of symmetric functions with rational coefficients in two parameters <span><math><mi>q</mi><mo>,</mo><mi>t</mi></math></span> (denoted by <span><math><mi>Λ</mi><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>) are computed by assigning some values to skew Macdonald polynomials in <em>λ</em>-ring notation. The new rule is utilized to provide new iterative formulas and also recover various existing formulas in a unified manner. Specifically the following applications are discussed: (i) A <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Murnaghan-Nakayama rule for Macdonald functions is given as a generalization of the <em>q</em>-Murnaghan-Nakayama rule; (ii) An iterative formula for the <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Green polynomial is deduced; (iii) A simple proof of the Murnaghan-Nakayama rule for the Hecke algebra and the Hecke-Clifford algebra is offered; (iv) A combinatorial inversion of the Pieri rule for Hall-Littlewood functions is derived with the help of the vertex operator realization of the Hall-Littlewood functions; (v) Two iterative formulae for the <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Kostka polynomials <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>λ</mi><mi>μ</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> are obtained from the dual version of our multiparametric Murnaghan-Nakayama rule, one of which yields an explicit formula for arbitrary <em>λ</em> and <em>μ</em> in terms of the generalized <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-binomial coefficient introduced independently by Lassalle and Okounkov.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105920"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiparametric Murnaghan-Nakayama rule for Macdonald polynomials\",\"authors\":\"Naihuan Jing , Ning Liu\",\"doi\":\"10.1016/j.jcta.2024.105920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a new family of operators as multi-parameter deformation of the one-row Macdonald polynomials. The matrix coefficients of these operators acting on the space of symmetric functions with rational coefficients in two parameters <span><math><mi>q</mi><mo>,</mo><mi>t</mi></math></span> (denoted by <span><math><mi>Λ</mi><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>) are computed by assigning some values to skew Macdonald polynomials in <em>λ</em>-ring notation. The new rule is utilized to provide new iterative formulas and also recover various existing formulas in a unified manner. Specifically the following applications are discussed: (i) A <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Murnaghan-Nakayama rule for Macdonald functions is given as a generalization of the <em>q</em>-Murnaghan-Nakayama rule; (ii) An iterative formula for the <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Green polynomial is deduced; (iii) A simple proof of the Murnaghan-Nakayama rule for the Hecke algebra and the Hecke-Clifford algebra is offered; (iv) A combinatorial inversion of the Pieri rule for Hall-Littlewood functions is derived with the help of the vertex operator realization of the Hall-Littlewood functions; (v) Two iterative formulae for the <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Kostka polynomials <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>λ</mi><mi>μ</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> are obtained from the dual version of our multiparametric Murnaghan-Nakayama rule, one of which yields an explicit formula for arbitrary <em>λ</em> and <em>μ</em> in terms of the generalized <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-binomial coefficient introduced independently by Lassalle and Okounkov.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"207 \",\"pages\":\"Article 105920\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000591\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000591","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A multiparametric Murnaghan-Nakayama rule for Macdonald polynomials
We introduce a new family of operators as multi-parameter deformation of the one-row Macdonald polynomials. The matrix coefficients of these operators acting on the space of symmetric functions with rational coefficients in two parameters (denoted by ) are computed by assigning some values to skew Macdonald polynomials in λ-ring notation. The new rule is utilized to provide new iterative formulas and also recover various existing formulas in a unified manner. Specifically the following applications are discussed: (i) A -Murnaghan-Nakayama rule for Macdonald functions is given as a generalization of the q-Murnaghan-Nakayama rule; (ii) An iterative formula for the -Green polynomial is deduced; (iii) A simple proof of the Murnaghan-Nakayama rule for the Hecke algebra and the Hecke-Clifford algebra is offered; (iv) A combinatorial inversion of the Pieri rule for Hall-Littlewood functions is derived with the help of the vertex operator realization of the Hall-Littlewood functions; (v) Two iterative formulae for the -Kostka polynomials are obtained from the dual version of our multiparametric Murnaghan-Nakayama rule, one of which yields an explicit formula for arbitrary λ and μ in terms of the generalized -binomial coefficient introduced independently by Lassalle and Okounkov.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.