On the number of subsequence sums related to the support of a sequence in finite abelian groups

IF 1.2 2区 数学 Q2 MATHEMATICS
Rui Wang, Han Chao, Jiangtao Peng
{"title":"On the number of subsequence sums related to the support of a sequence in finite abelian groups","authors":"Rui Wang,&nbsp;Han Chao,&nbsp;Jiangtao Peng","doi":"10.1016/j.jcta.2025.106124","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a finite abelian group and <em>S</em> a sequence with elements of <em>G</em>. Let <span><math><mo>|</mo><mi>S</mi><mo>|</mo></math></span> denote the length of <em>S</em> and <span><math><mrow><mi>supp</mi></mrow><mo>(</mo><mi>S</mi><mo>)</mo></math></span> the set of all the distinct terms in <em>S</em>. For an integer <em>k</em> with <span><math><mi>k</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>]</mo></math></span>, let <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>⊂</mo><mi>G</mi></math></span> denote the set of group elements which can be expressed as a sum of a subsequence of <em>S</em> with length <em>k</em>. Let <span><math><mi>Σ</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∪</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></msubsup><msub><mrow><mi>Σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∪</mo></mrow><mrow><mi>t</mi><mo>=</mo><mi>k</mi></mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></msubsup><msub><mrow><mi>Σ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. It is known that if <span><math><mn>0</mn><mo>∉</mo><mi>Σ</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span>, then <span><math><mo>|</mo><mi>Σ</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>+</mo><mo>|</mo><mrow><mi>supp</mi></mrow><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn></math></span>. In this paper, we determine the structure of a sequence <em>S</em> satisfying <span><math><mn>0</mn><mo>∉</mo><mi>Σ</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span> and <span><math><mo>|</mo><mi>Σ</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mo>=</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>+</mo><mo>|</mo><mrow><mi>supp</mi></mrow><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn></math></span>. As a consequence, we can give a counterexample of a conjecture of Gao, Grynkiewicz, and Xia. Moreover, we prove that if <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>&gt;</mo><mi>k</mi></math></span> and <span><math><mn>0</mn><mo>∉</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>∪</mo><mrow><mi>supp</mi></mrow><mo>(</mo><mi>S</mi><mo>)</mo></math></span>, then <span><math><mo>|</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>−</mo><mi>k</mi><mo>+</mo><mo>|</mo><mrow><mi>supp</mi></mrow><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo></math></span>. Then we can give an alternative proof of a conjecture of Hamidoune, which was first proved by Gao, Grynkiewicz, and Xia.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"218 ","pages":"Article 106124"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525001190","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a finite abelian group and S a sequence with elements of G. Let |S| denote the length of S and supp(S) the set of all the distinct terms in S. For an integer k with k[1,|S|], let Σk(S)G denote the set of group elements which can be expressed as a sum of a subsequence of S with length k. Let Σ(S)=k=1|S|Σk(S) and Σk(S)=t=k|S|Σt(S). It is known that if 0Σ(S), then |Σ(S)||S|+|supp(S)|1. In this paper, we determine the structure of a sequence S satisfying 0Σ(S) and |Σ(S)|=|S|+|supp(S)|1. As a consequence, we can give a counterexample of a conjecture of Gao, Grynkiewicz, and Xia. Moreover, we prove that if |S|>k and 0Σk(S)supp(S), then |Σk(S)||S|k+|supp(S)|. Then we can give an alternative proof of a conjecture of Hamidoune, which was first proved by Gao, Grynkiewicz, and Xia.
有限阿贝尔群中与序列支持度相关的子序列和的数目
设G是一个有限阿贝尔群,S是一个具有G元素的序列,设|S|表示S的长度,supp(S)表示S中所有不同项的集合。对于k∈[1,|S|]的整数k,设Σk(S)∧G表示可以表示为长度为k的S的子序列的和的群元素集合,设Σ(S)=∪k=1|S|Σk(S)和Σ≥k(S)=∪t=k|S|Σt(S)。众所周知,如果0∉Σ(S),然后|Σ(S) |≥| | + |增刊(S) |−1。本文确定了满足0∈Σ(S)和|Σ(S)|=|S|+|supp(S)|−1的序列S的结构。因此,我们可以给出Gao、Grynkiewicz和Xia猜想的一个反例。此外,我们证明如果| |在k和0∉Σ≥k (S)∪增刊(S),然后|Σ≥k (S) |≥|年代|−k + |增刊(S) |。然后,我们可以给出由Gao、Grynkiewicz和Xia首先证明的Hamidoune猜想的另一种证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信