{"title":"On the number of subsequence sums related to the support of a sequence in finite abelian groups","authors":"Rui Wang, Han Chao, Jiangtao Peng","doi":"10.1016/j.jcta.2025.106124","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a finite abelian group and <em>S</em> a sequence with elements of <em>G</em>. Let <span><math><mo>|</mo><mi>S</mi><mo>|</mo></math></span> denote the length of <em>S</em> and <span><math><mrow><mi>supp</mi></mrow><mo>(</mo><mi>S</mi><mo>)</mo></math></span> the set of all the distinct terms in <em>S</em>. For an integer <em>k</em> with <span><math><mi>k</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>]</mo></math></span>, let <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>⊂</mo><mi>G</mi></math></span> denote the set of group elements which can be expressed as a sum of a subsequence of <em>S</em> with length <em>k</em>. Let <span><math><mi>Σ</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∪</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></msubsup><msub><mrow><mi>Σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∪</mo></mrow><mrow><mi>t</mi><mo>=</mo><mi>k</mi></mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></msubsup><msub><mrow><mi>Σ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. It is known that if <span><math><mn>0</mn><mo>∉</mo><mi>Σ</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span>, then <span><math><mo>|</mo><mi>Σ</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>+</mo><mo>|</mo><mrow><mi>supp</mi></mrow><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn></math></span>. In this paper, we determine the structure of a sequence <em>S</em> satisfying <span><math><mn>0</mn><mo>∉</mo><mi>Σ</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span> and <span><math><mo>|</mo><mi>Σ</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mo>=</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>+</mo><mo>|</mo><mrow><mi>supp</mi></mrow><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn></math></span>. As a consequence, we can give a counterexample of a conjecture of Gao, Grynkiewicz, and Xia. Moreover, we prove that if <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>></mo><mi>k</mi></math></span> and <span><math><mn>0</mn><mo>∉</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>∪</mo><mrow><mi>supp</mi></mrow><mo>(</mo><mi>S</mi><mo>)</mo></math></span>, then <span><math><mo>|</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>−</mo><mi>k</mi><mo>+</mo><mo>|</mo><mrow><mi>supp</mi></mrow><mo>(</mo><mi>S</mi><mo>)</mo><mo>|</mo></math></span>. Then we can give an alternative proof of a conjecture of Hamidoune, which was first proved by Gao, Grynkiewicz, and Xia.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"218 ","pages":"Article 106124"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525001190","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a finite abelian group and S a sequence with elements of G. Let denote the length of S and the set of all the distinct terms in S. For an integer k with , let denote the set of group elements which can be expressed as a sum of a subsequence of S with length k. Let and . It is known that if , then . In this paper, we determine the structure of a sequence S satisfying and . As a consequence, we can give a counterexample of a conjecture of Gao, Grynkiewicz, and Xia. Moreover, we prove that if and , then . Then we can give an alternative proof of a conjecture of Hamidoune, which was first proved by Gao, Grynkiewicz, and Xia.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.