Dissection of the quintuple product, with applications

IF 1.2 2区 数学 Q2 MATHEMATICS
Tim Huber , James Mc Laughlin , Dongxi Ye
{"title":"Dissection of the quintuple product, with applications","authors":"Tim Huber ,&nbsp;James Mc Laughlin ,&nbsp;Dongxi Ye","doi":"10.1016/j.jcta.2025.106122","DOIUrl":null,"url":null,"abstract":"<div><div>This work considers the <em>m</em>-dissection (for <span><math><mi>m</mi><mo>≢</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>) of the general quintuple product<span><span><span><math><mi>Q</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>q</mi><mo>/</mo><mi>z</mi><mo>,</mo><mi>q</mi><mo>;</mo><mi>q</mi><mo>)</mo></mrow><mrow><mo>∞</mo></mrow></msub><msub><mrow><mo>(</mo><mi>q</mi><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mi>q</mi><mo>/</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>;</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>.</mo></math></span></span></span> Multiple novel applications arise from this <em>m</em>-dissection. For example, we derive the general partition identity<span><span><span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>S</mi></mrow></msub><mo>(</mo><mi>m</mi><mi>n</mi><mo>+</mo><mo>(</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>24</mn><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>6</mn></mrow></msup><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>,</mo><mspace></mspace><mtext> for all </mtext><mi>n</mi><mo>≥</mo><mn>0</mn><mo>,</mo></math></span></span></span> where <span><math><mi>m</mi><mo>≡</mo><mn>5</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>6</mn><mo>)</mo></math></span> is a square-free positive integer relatively prime to 6; <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>S</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is defined, for <em>S</em> the set of positive integers containing no multiples of <em>m</em>, to be the number of partitions of <em>n</em> into an <u>even</u> number of distinct parts from <em>S</em> minus the number of partitions of <em>n</em> into an <u>odd</u> number of distinct parts from <em>S</em>; and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denotes the number of <em>m</em>-regular partitions of <em>n</em>. The dissections allow us to prove a conjecture of Hirschhorn concerning the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>-dissection of <span><math><msub><mrow><mo>(</mo><mi>q</mi><mo>;</mo><mi>q</mi><mo>)</mo></mrow><mrow><mo>∞</mo></mrow></msub></math></span>, as well as determine the pattern of the sign changes of the coefficients <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of the infinite product<span><span><span><math><mfrac><mrow><msub><mrow><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msup><mo>;</mo><msup><mrow><mi>q</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msup><mo>)</mo></mrow><mrow><mo>∞</mo></mrow></msub></mrow><mrow><msubsup><mrow><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>;</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>∞</mo></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfrac><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>p</mi><mo>≥</mo><mn>5</mn><mspace></mspace><mtext>a prime.</mtext></math></span></span></span> This covers a recent result of Bringmann et al. that corresponds to the case <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>=</mo><mn>5</mn></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"219 ","pages":"Article 106122"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525001177","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work considers the m-dissection (for m0(mod3)) of the general quintuple productQ(z,q)=(z,q/z,q;q)(qz2,q/z2;q2). Multiple novel applications arise from this m-dissection. For example, we derive the general partition identityDS(mn+(m21)/24)=(1)(m+1)/6bm(n), for all n0, where m5(mod6) is a square-free positive integer relatively prime to 6; DS(n) is defined, for S the set of positive integers containing no multiples of m, to be the number of partitions of n into an even number of distinct parts from S minus the number of partitions of n into an odd number of distinct parts from S; and bm(n) denotes the number of m-regular partitions of n. The dissections allow us to prove a conjecture of Hirschhorn concerning the 2n-dissection of (q;q), as well as determine the pattern of the sign changes of the coefficients an of the infinite product(q2k1;q2k1)(qp;qp)2=n=0anqn,k1,p5a prime. This covers a recent result of Bringmann et al. that corresponds to the case k=1 and p=5.
五元积的解剖,及其应用
本文考虑一般五元积tq (z,q)=(z,q/z,q;q)∞(qz2,q/z2;q2)∞的m-剖分(对于m > 0(mod3))。这种m型解剖产生了多种新的应用。例如,我们推导出一般划分恒等式ds (mn+(m2−1)/24)=(−1)(m+1)/6bm(n),对于所有n≥0,其中m≡5(mod6)是一个相对素数为6的无平方正整数;定义DS(n),对于S是不含m的正整数集合,等于n被划分为从S出发的偶数个可分离部分的个数减去n被划分为从S出发的奇数个可分离部分的个数;bm(n)表示n的m个正则分割的个数。这些分割证明了Hirschhorn关于(q;q)∞的2n-分割的一个猜想,并确定了无穷积(q2k−1;q2k−1)∞(qp;qp)∞2=∑n=0∞和qn,k≥1,p≥5a素数的系数an的符号变化规律。这涵盖了Bringmann等人最近的结果,对应于k=1和p=5的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信