{"title":"Dissection of the quintuple product, with applications","authors":"Tim Huber , James Mc Laughlin , Dongxi Ye","doi":"10.1016/j.jcta.2025.106122","DOIUrl":null,"url":null,"abstract":"<div><div>This work considers the <em>m</em>-dissection (for <span><math><mi>m</mi><mo>≢</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn><mo>)</mo></math></span>) of the general quintuple product<span><span><span><math><mi>Q</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>q</mi><mo>/</mo><mi>z</mi><mo>,</mo><mi>q</mi><mo>;</mo><mi>q</mi><mo>)</mo></mrow><mrow><mo>∞</mo></mrow></msub><msub><mrow><mo>(</mo><mi>q</mi><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mi>q</mi><mo>/</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>;</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>.</mo></math></span></span></span> Multiple novel applications arise from this <em>m</em>-dissection. For example, we derive the general partition identity<span><span><span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>S</mi></mrow></msub><mo>(</mo><mi>m</mi><mi>n</mi><mo>+</mo><mo>(</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>24</mn><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>6</mn></mrow></msup><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>,</mo><mspace></mspace><mtext> for all </mtext><mi>n</mi><mo>≥</mo><mn>0</mn><mo>,</mo></math></span></span></span> where <span><math><mi>m</mi><mo>≡</mo><mn>5</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>6</mn><mo>)</mo></math></span> is a square-free positive integer relatively prime to 6; <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>S</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is defined, for <em>S</em> the set of positive integers containing no multiples of <em>m</em>, to be the number of partitions of <em>n</em> into an <u>even</u> number of distinct parts from <em>S</em> minus the number of partitions of <em>n</em> into an <u>odd</u> number of distinct parts from <em>S</em>; and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denotes the number of <em>m</em>-regular partitions of <em>n</em>. The dissections allow us to prove a conjecture of Hirschhorn concerning the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>-dissection of <span><math><msub><mrow><mo>(</mo><mi>q</mi><mo>;</mo><mi>q</mi><mo>)</mo></mrow><mrow><mo>∞</mo></mrow></msub></math></span>, as well as determine the pattern of the sign changes of the coefficients <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of the infinite product<span><span><span><math><mfrac><mrow><msub><mrow><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msup><mo>;</mo><msup><mrow><mi>q</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msup><mo>)</mo></mrow><mrow><mo>∞</mo></mrow></msub></mrow><mrow><msubsup><mrow><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>;</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>∞</mo></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfrac><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>p</mi><mo>≥</mo><mn>5</mn><mspace></mspace><mtext>a prime.</mtext></math></span></span></span> This covers a recent result of Bringmann et al. that corresponds to the case <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>=</mo><mn>5</mn></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"219 ","pages":"Article 106122"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525001177","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work considers the m-dissection (for ) of the general quintuple product Multiple novel applications arise from this m-dissection. For example, we derive the general partition identity where is a square-free positive integer relatively prime to 6; is defined, for S the set of positive integers containing no multiples of m, to be the number of partitions of n into an even number of distinct parts from S minus the number of partitions of n into an odd number of distinct parts from S; and denotes the number of m-regular partitions of n. The dissections allow us to prove a conjecture of Hirschhorn concerning the -dissection of , as well as determine the pattern of the sign changes of the coefficients of the infinite product This covers a recent result of Bringmann et al. that corresponds to the case and .
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.