{"title":"Arithmetic properties of MacMahon-type sums of divisors: The odd case","authors":"James A. Sellers , Roberto Tauraso","doi":"10.1016/j.jcta.2025.106105","DOIUrl":null,"url":null,"abstract":"<div><div>A century ago, P. A. MacMahon introduced two families of generating functions,<span><span><span><math><munder><mo>∑</mo><mrow><mn>1</mn><mo>≤</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></munder><munderover><mo>∏</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>t</mi></mrow></munderover><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mspace></mspace><mtext> and </mtext><munder><mo>∑</mo><mrow><mtable><mtr><mtd><mn>1</mn><mo>≤</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub></mtd></mtr><mtr><mtd><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mtext> odd</mtext></mrow></mtd></mtr></mtable></mrow></munder><munderover><mo>∏</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>t</mi></mrow></munderover><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> which connect sum-of-divisors functions and integer partitions. These have recently drawn renewed attention. In particular, Amdeberhan, Andrews, and Tauraso extended the first family above by defining<span><span><span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>1</mn><mo>≤</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></munder><munderover><mo>∏</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>t</mi></mrow></munderover><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow><mrow><mn>1</mn><mo>+</mo><mi>a</mi><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow></mfrac></math></span></span></span> for <span><math><mi>a</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>±</mo><mn>1</mn><mo>,</mo><mo>±</mo><mn>2</mn></math></span> and investigated various properties, including some congruences satisfied by the coefficients of the power series representations for <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. These arithmetic aspects were subsequently expanded upon by the authors of the present work. Our goal here is to generalize the second family of generating functions, where the sums run over odd integers, and then apply similar techniques to show new infinite families of Ramanujan–like congruences for the associated power series coefficients.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"218 ","pages":"Article 106105"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525001001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A century ago, P. A. MacMahon introduced two families of generating functions, which connect sum-of-divisors functions and integer partitions. These have recently drawn renewed attention. In particular, Amdeberhan, Andrews, and Tauraso extended the first family above by defining for and investigated various properties, including some congruences satisfied by the coefficients of the power series representations for . These arithmetic aspects were subsequently expanded upon by the authors of the present work. Our goal here is to generalize the second family of generating functions, where the sums run over odd integers, and then apply similar techniques to show new infinite families of Ramanujan–like congruences for the associated power series coefficients.
一个世纪前,P. A. MacMahon引入了两个生成函数族,∑1≤n1<n2<⋯<nt∏k=1tqnk(1−qnk)2和∑1≤n1<;n2<⋯<ntn1,n2,…,nt奇数∏k=1tqnk(1−qnk)2,它们连接了除数和函数和整数分区。最近,这些问题再次引起了人们的关注。特别是,Amdeberhan, Andrews和Tauraso通过定义t(a,q)扩展了上述第一族:=∑1≤n1<n2<⋯<nt∏k=1tqnk1+aqnk+q2nk,对于a=0,±1,±2,并研究了各种性质,包括Ut(a,q)的幂级数表示的系数满足的一些同余。这些算术方面随后被本工作的作者扩展。这里我们的目标是推广第二种生成函数族,其中的和在奇数上运行,然后应用类似的技术来显示相关幂级数系数的新的无限类拉马努金同余族。
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.