Flag-transitive automorphism groups of 2-designs with λ ≥ (r,λ)2 are not product type

IF 0.9 2区 数学 Q2 MATHEMATICS
Huiling Li , Zhilin Zhang , Shenglin Zhou
{"title":"Flag-transitive automorphism groups of 2-designs with λ ≥ (r,λ)2 are not product type","authors":"Huiling Li ,&nbsp;Zhilin Zhang ,&nbsp;Shenglin Zhou","doi":"10.1016/j.jcta.2024.105923","DOIUrl":null,"url":null,"abstract":"<div><p>In this note we show that a flag-transitive automorphism group <em>G</em> of a non-trivial 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design with <span><math><mi>λ</mi><mo>≥</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>λ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> is not of product action type. In conclusion, <em>G</em> is a primitive group of affine or almost simple type.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105923"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000621","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note we show that a flag-transitive automorphism group G of a non-trivial 2-(v,k,λ) design with λ(r,λ)2 is not of product action type. In conclusion, G is a primitive group of affine or almost simple type.

λ≥(r,λ)2的2-设计的旗跨自形群不是积型的
在本注释中,我们证明了一个非三维 2-(v,k,λ) 设计的、λ≥(r,λ)2 的旗反自形群 G 不属于积作用类型。总之,G 是仿射型或近似简单型的基元群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信