{"title":"Intersection density of imprimitive groups of degree pq","authors":"Angelot Behajaina , Roghayeh Maleki , Andriaherimanana Sarobidy Razafimahatratra","doi":"10.1016/j.jcta.2024.105922","DOIUrl":null,"url":null,"abstract":"<div><p>A subset <span><math><mi>F</mi></math></span> of a finite transitive group <span><math><mi>G</mi><mo>≤</mo><mi>Sym</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is <em>intersecting</em> if any two elements of <span><math><mi>F</mi></math></span> agree on an element of Ω. The <em>intersection density</em> of <em>G</em> is the number<span><span><span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo></mo><mrow><mo>{</mo><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>/</mo><mo>|</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>|</mo><mo>|</mo><mi>F</mi><mo>⊂</mo><mi>G</mi><mtext> is intersecting</mtext><mo>}</mo></mrow><mo>,</mo></math></span></span></span> where <span><math><mi>ω</mi><mo>∈</mo><mi>Ω</mi></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> is the stabilizer of <em>ω</em> in <em>G</em>. It is known that if <span><math><mi>G</mi><mo>≤</mo><mi>Sym</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is an imprimitive group of degree a product of two odd primes <span><math><mi>p</mi><mo>></mo><mi>q</mi></math></span> admitting a block of size <em>p</em> or two complete block systems, whose blocks are of size <em>q</em>, then <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>.</p><p>In this paper, we analyze the intersection density of imprimitive groups of degree <em>pq</em> with a unique block system with blocks of size <em>q</em> based on the kernel of the induced action on blocks. For those whose kernels are non-trivial, it is proved that the intersection density is larger than 1 whenever there exists a cyclic code <em>C</em> with parameters <span><math><msub><mrow><mo>[</mo><mi>p</mi><mo>,</mo><mi>k</mi><mo>]</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> such that any codeword of <em>C</em> has weight at most <span><math><mi>p</mi><mo>−</mo><mn>1</mn></math></span>, and under some additional conditions on the cyclic code, it is a proper rational number. For those that are quasiprimitive, we reduce the cases to almost simple groups containing <span><math><mi>Alt</mi><mo>(</mo><mn>5</mn><mo>)</mo></math></span> or a projective special linear group. We give some examples where the latter has intersection density equal to 1, under some restrictions on <em>p</em> and <em>q</em>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105922"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009731652400061X/pdfft?md5=4600ca58b59525e76de9f361f9c870b7&pid=1-s2.0-S009731652400061X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652400061X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A subset of a finite transitive group is intersecting if any two elements of agree on an element of Ω. The intersection density of G is the number where and is the stabilizer of ω in G. It is known that if is an imprimitive group of degree a product of two odd primes admitting a block of size p or two complete block systems, whose blocks are of size q, then .
In this paper, we analyze the intersection density of imprimitive groups of degree pq with a unique block system with blocks of size q based on the kernel of the induced action on blocks. For those whose kernels are non-trivial, it is proved that the intersection density is larger than 1 whenever there exists a cyclic code C with parameters such that any codeword of C has weight at most , and under some additional conditions on the cyclic code, it is a proper rational number. For those that are quasiprimitive, we reduce the cases to almost simple groups containing or a projective special linear group. We give some examples where the latter has intersection density equal to 1, under some restrictions on p and q.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.