Materials for Renewable and Sustainable Energy最新文献

筛选
英文 中文
Comprehensive study on photovoltaic cell's generation and factors affecting its performance: A Review 光伏电池的产生及其性能影响因素的综合研究综述
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2025-02-19 DOI: 10.1007/s40243-024-00292-5
Prabhakar Sharma, Ritesh Kumar Mishra
{"title":"Comprehensive study on photovoltaic cell's generation and factors affecting its performance: A Review","authors":"Prabhakar Sharma,&nbsp;Ritesh Kumar Mishra","doi":"10.1007/s40243-024-00292-5","DOIUrl":"10.1007/s40243-024-00292-5","url":null,"abstract":"<div><p>The utilization of fossil fuels for power generation results in the production of a greater quantity of pollutants and greenhouse gases, which exerts detrimental impacts on the ecosystem. A range of solar energy technologies can be employed to address forthcoming energy demands, concurrently mitigating pollution and protecting the world from global threats. This study critically reviewed all four generations of photovoltaic (PV) solar cells, focusing on fundamental concepts, material used, performance, operational principles, and cooling systems, along with their respective advantages and disadvantages. The manuscript analyzes various materials, including their performance, physical properties (electronic and optical), biodegradability, availability, cost, temperature stability, degradation rate, and other parameters. The sensible engineering of effective solar devices made of cutting -edge materials along with nanostructured ternary metal sulphides, and three-dimensional graphene are also briefly discussed which are more versatile, stable, thin and light weight with high performance as compare to third generation solar cells. The impact of material alterations is delineated in PV, where the efficiency of solar cell technology has improved from 4% to 47.1%. Further the research article deals with different internal and external stress factors affecting the solar PV module performance.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00292-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon coated titanium dioxide (CC-TiO2) as an efficient anode material for sodium- ion batteries 碳包覆二氧化钛(CC-TiO2)作为一种高效的钠离子电池负极材料
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2025-02-11 DOI: 10.1007/s40243-025-00298-7
Rahul Kumar, Anagha Pradeep, Parag Bhargava
{"title":"Carbon coated titanium dioxide (CC-TiO2) as an efficient anode material for sodium- ion batteries","authors":"Rahul Kumar,&nbsp;Anagha Pradeep,&nbsp;Parag Bhargava","doi":"10.1007/s40243-025-00298-7","DOIUrl":"10.1007/s40243-025-00298-7","url":null,"abstract":"<div><p>TiO<sub>2</sub> has attracted a lot of attention as anode material for sodium-ion batteries due to its higher operating voltage, safely and low lost material, but TiO<sub>2</sub> has two main issues, low electronic conductivity and slow solid-state ion diffusion. These issues have been successfully resolved by researchers using carbon coating on TiO<sub>2</sub>. In this work, carbon coated TiO<sub>2</sub> (CC-TiO<sub>2)</sub> nanoparticles have been synthesized by using TiO<sub>2</sub> and sucrose as soluble source of carbon. The carbon coating on TiO<sub>2</sub> particles was formed after heat treatment in inert atmosphere. CC-TiO<sub>2</sub> particles exhibited reversible capacity of 116 mAh g<sup>− 1</sup> at 0.1 C after 50 cycles, and high capacity retention of 77% after 100 cycles in a sodium-ion battery cell. The impressive electrochemical performance of the TiO<sub>2</sub> particles is due to several factors: the small size of the crystallites, the continuous electronic network created by the close contact of individual carbon-coated TiO<sub>2</sub> particles, and the efficient penetration of the mesopores by the electrolyte.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00298-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategic control of excess tellurium to achieve high figure-of-merit in Te-rich Bi0.5Sb1.5Te3 战略控制过量碲,实现富te Bi0.5Sb1.5Te3的高优值
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2025-02-06 DOI: 10.1007/s40243-024-00293-4
Ranu Bhatt, Rishikesh Kumar, Pramod Bhatt, Pankaj Patro, Shovit Bhattacharya, Mani Navaneethan, Soumen Samanta, Ajay Singh
{"title":"Strategic control of excess tellurium to achieve high figure-of-merit in Te-rich Bi0.5Sb1.5Te3","authors":"Ranu Bhatt,&nbsp;Rishikesh Kumar,&nbsp;Pramod Bhatt,&nbsp;Pankaj Patro,&nbsp;Shovit Bhattacharya,&nbsp;Mani Navaneethan,&nbsp;Soumen Samanta,&nbsp;Ajay Singh","doi":"10.1007/s40243-024-00293-4","DOIUrl":"10.1007/s40243-024-00293-4","url":null,"abstract":"<div><p>Increasing the Te content in stoichiometric Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> facilitates effective control over the anti-site defects and nanostructure; however, arresting excess Te in the host matrix is challenging. Herein, we report the success of a saturation-annealing treatment in a vacuum, followed by air-quenching as a promising approach for synthesizing high figure-of-merit (<i>zT</i>) Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>+xTe (x = 0, 2, 5 and 10 wt%) materials. A remarkably high-power factor (<i>α</i><sup><i>2</i></sup><i>σ</i> ~ 6 mW at 300 K) is achieved in <i>p</i>-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> + 5 wt% Te composition due to high carrier concentration (<i>n</i>) and good carrier mobility (<i>µ</i>). Microstructural analysis revealed the formation of densely interconnected polycrystalline grains featuring fine grain boundaries, planar/point defects, and strain field domains, contributing towards wide-length scale phonon scattering. The cumulative effect of drastically reduced thermal conductivity (κ ~ 0.8 W/m-K at 300 K), and enhanced power factor resulted in a record <i>zT</i> value ~ 2.2 at 300 K in Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> + 5 wt% Te, with an average <i>zT</i> value up to 1.35 in temperatures ranging from 303 to 573 K. The COMSOL simulations predict a maximum conversion efficiency (<i>η</i><sub><i>max</i></sub>) of ~ 15%, at a temperature gradient (<i>∆T</i>) of 270 K, for a single-leg thermoelectric generator (TEG) developed using this material.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00293-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Addressing fabrication challenges in perovskite-silicon tandem solar cells with advanced simulation techniques 利用先进的模拟技术解决钙钛矿-硅串联太阳能电池的制造挑战
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2025-02-04 DOI: 10.1007/s40243-024-00284-5
Raman Kumar, Prakash Kanjariya, A. Abu-Jrai, Nagaraj Patil, Mohd Shukri Ab Yajid, Jatinder Kaur, Rahul Singh, P. Vijaya Kumar, Sanjeev Kumar Shah, Mohammad Iqbal Khairandish
{"title":"Addressing fabrication challenges in perovskite-silicon tandem solar cells with advanced simulation techniques","authors":"Raman Kumar,&nbsp;Prakash Kanjariya,&nbsp;A. Abu-Jrai,&nbsp;Nagaraj Patil,&nbsp;Mohd Shukri Ab Yajid,&nbsp;Jatinder Kaur,&nbsp;Rahul Singh,&nbsp;P. Vijaya Kumar,&nbsp;Sanjeev Kumar Shah,&nbsp;Mohammad Iqbal Khairandish","doi":"10.1007/s40243-024-00284-5","DOIUrl":"10.1007/s40243-024-00284-5","url":null,"abstract":"<div><p>In the pursuit of higher conversion efficiency, the PV industry has turned its focus towards perovskite-silicon tandem solar cells, which currently represent the peak of innovation. To surpass the efficiency limits of traditional single-junction cells, researchers are exploring the potential of these tandem solar cells by integrating the merits of perovskite and silicon. However, integrating these cells brings different challenges, such as deposition methods and material misalignments. Thus, in this work, we are using advanced simulation techniques, including Silvaco ATLAS’s Victory Process and Device Simulator to imitate the actual manufacturing processes. Primarily this research work focuses on three scenarios: shunting, planarization and conformal deposition to emulate the experimental conditions. The obtained results show the potential and effectiveness of process simulations in accurately predicting and improving the PV performance of the tandem solar cell. Two different perovskite-silicon tandem solar cells are designed using process simulations which showed a conversion efficiency of 27.51% and 29.08% respectively. This work highlights the importance of using simulation tools for the further development of tandem solar cell technology. Detailed process and device simulations reported in this work may pave the way in the fabrication of optimised perovskite/silicon tandem solar cell.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00284-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the electrochemical impedance spectroscopy of hydrogenated amorphous silicon cells for photovoltaics 氢化非晶硅电池的电化学阻抗谱研究
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2025-02-01 DOI: 10.1007/s40243-024-00295-2
Soni Prayogi, Deril Ristiani, D. Darminto
{"title":"Unravelling the electrochemical impedance spectroscopy of hydrogenated amorphous silicon cells for photovoltaics","authors":"Soni Prayogi,&nbsp;Deril Ristiani,&nbsp;D. Darminto","doi":"10.1007/s40243-024-00295-2","DOIUrl":"10.1007/s40243-024-00295-2","url":null,"abstract":"<div><p>This research reveals the application of electrochemical impedance spectroscopy (EIS) in analyzing and improving the performance of hydrogenated amorphous silicon (a-Si: H) based photovoltaic cells. As a non-destructive technique, EIS provides deep insight into the electrochemical characteristics of photovoltaic cells, including series resistance, layer capacitance, recombination mechanisms, and charge transport. The impedance data is obtained and analyzed using small AC potential signals at various frequencies via Nyquist diagrams and Bode plots. This analysis allows the identification of resistive and capacitive elements as well as the evaluation of the quality of the interface between the active layer and the electrode. The results show that EIS can identify internal barriers that reduce the efficiency of a-Si: H solar cells, such as dominant recombination mechanisms and inefficient charge transport. Using equivalent circuit models, electrochemical parameters are extracted to reveal cell behavior and performance. In addition, these results also confirm that EIS is an important tool in design optimization and performance improvement of a-Si: H photovoltaic cells, providing a solid scientific basis for the development of more efficient and sustainable solar cell technology. These findings contribute to efforts to increase solar energy efficiency, supporting broader and more effective use of photovoltaic technology in meeting global sustainable energy needs.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00295-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen generation through metal waste corrosion: a systematic investigation on old/post-consumer scrap Al6063-series alloy 金属废物腐蚀制氢:旧/废al6063系列合金的系统研究
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2025-01-25 DOI: 10.1007/s40243-024-00287-2
Meenal Gupta, Filippo Selleri, Antonio Ficarella, Patrizia Bocchetta
{"title":"Hydrogen generation through metal waste corrosion: a systematic investigation on old/post-consumer scrap Al6063-series alloy","authors":"Meenal Gupta,&nbsp;Filippo Selleri,&nbsp;Antonio Ficarella,&nbsp;Patrizia Bocchetta","doi":"10.1007/s40243-024-00287-2","DOIUrl":"10.1007/s40243-024-00287-2","url":null,"abstract":"<div><p>In this study, aluminum-based wastes are used as energy carriers for on-demand hydrogen production through sustainable, eco-friendly, and cost-effective controlled electrochemical corrosion in aqueous solution. The electrochemical process is very effective because it (i) uses waste metals to produce hydrogen, (ii) corroborates to circular economy, (iii) produces high purity hydrogen, (iv) is based on simple hydrolysis reaction of metals in relevant solutions, (v) electricity is not required and (iv) recovers part of the chemical Gibbs energy of the electrochemical corrosion usually entirely lost in the environment. We systematically studied the generation of hydrogen from industrial waste Dust Scrap Aluminum Alloy (DSAA) belonging to Al 6063 series for the first time. The process is investigated in a novel hand-made batch reactor with a low-cost commercial body suitable to an easy scale-up. Kinetics of DSAA hydrolysis reaction was explored by measuring the variation of aluminium ion concentration at different immersion times through Inductively Coupled Plasma (ICP) and weight loss measurements at different temperatures and NaOH catalyst concentrations. The effect of hydrolysis reaction on the composition and morphology of the metal surfaces in terms of formed oxide layers was studied in detail using Optical Polarizing Microscopy (OPM), Energy dispersive X-ray (EDX) and Scanning Electron Microscopy (SEM) techniques. The criteria used to evaluate the hydrogen reactor performance were hydrogen (i) yield and (ii) production rate. The experimental results showed that a strong increase in NaOH concentration (from 0.75 to 5 M) corresponding to a slow increase in hydrolysis reaction temperature (from 38.8 to 49.9 °C) lead to an improvement in hydrogen generation rate of one order of magnitude, i.e. from 35.71 to 421.41 ml/(g∙min). Low but constant rate of hydrogen can be generated for longer times at low NaOH concentrations (0.75 M), while fast and variable hydrogen generation rate occurs at higher concentrations (5 M) in short times. In the case study of Al 6063 series waste scrap, the hydrolysis reactor parameters can be regulated to deliver hydrogen generation rates from 35.71 to 421.41 ml/(g min) according to requirements. We expect that the results presented in this work will encourage researchers to study the possible use of other metal-based and multi-material plastic/metal wastes thermodynamically prone to electrochemical corrosion process as possible source of hydrogen.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00287-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring durable MnOx-based electrodes for high-performance electrocatalytic function for next-generation electrocatalysis applications 定制耐用的mnox基电极,用于下一代电催化应用的高性能电催化功能
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2025-01-21 DOI: 10.1007/s40243-024-00290-7
Hashem Tayeba, Roya Kiani-Anbouhi,  Neda Royaei
{"title":"Tailoring durable MnOx-based electrodes for high-performance electrocatalytic function for next-generation electrocatalysis applications","authors":"Hashem Tayeba,&nbsp;Roya Kiani-Anbouhi,&nbsp; Neda Royaei","doi":"10.1007/s40243-024-00290-7","DOIUrl":"10.1007/s40243-024-00290-7","url":null,"abstract":"<div><p>This study introduces a high-performance electrode coated with MnO<sub>x</sub> compounds to enhance the HER reaction. The active and precipitated MnO<sub>x</sub> species facilitate interconnected electron transport throughout the Ti electrodes. The tailored MnO<sub>x</sub> electrodes exhibited a significant reduction in R<sub>ct</sub> (69.7%), superior C<sub>dl</sub> (31.6%), and a notably lower Nyquist ring compared to traditional Ti electrodes, confirming their excellent electrocatalytic performance in Cl<sup>−</sup> and NaCl production. Additionally, LSV and PDP analysis demonstrated that the MnO<sub>x</sub> electrodes achieved a 53.9% decrease in Tafel slopes (from 139 mV/decade to 64 mV/decade), lower activity potentials, and robust corrosion resistance (99.4%), indicating faster kinetics and higher efficiency. High-resolution FESEM and contact angle images revealed that the MnO<sub>x</sub> electrodes possess uniform porous networks and semi-super hydrophilic function, optimizing H<sub>2</sub> release and expanding the interfacial area for electron transfer. Finally, the Ti electrodes with advanced MnO<sub>x</sub> coatings can serve as reliable, cost-effective, and efficient candidates for use as regenerating electrodes in electrocatalytic industries. Moreover, the novel MnO<sub>x</sub>/rGO composites are versatile materials used as catalysts in chemical reactions, effective electrodes in energy storage devices, sensitive gas sensors, and for water treatment to remove contaminants.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00290-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triple-junction tandem solar cells: structural and spectral optimization for improved current matching and efficiency 三结串联太阳能电池:结构和光谱优化以改善电流匹配和效率
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2025-01-21 DOI: 10.1007/s40243-024-00291-6
Hugo Rolando Sánchez Quispe, Prakash Kanjariya, Suhas Ballal, Anita Devi, Girish Chandra Sharma, Radhwan Abdul Kareem, K. Satyam Naidu, Marwea Al-hedrewy, Ashish Kumar, Asaithambi Perumal
{"title":"Triple-junction tandem solar cells: structural and spectral optimization for improved current matching and efficiency","authors":"Hugo Rolando Sánchez Quispe,&nbsp;Prakash Kanjariya,&nbsp;Suhas Ballal,&nbsp;Anita Devi,&nbsp;Girish Chandra Sharma,&nbsp;Radhwan Abdul Kareem,&nbsp;K. Satyam Naidu,&nbsp;Marwea Al-hedrewy,&nbsp;Ashish Kumar,&nbsp;Asaithambi Perumal","doi":"10.1007/s40243-024-00291-6","DOIUrl":"10.1007/s40243-024-00291-6","url":null,"abstract":"<div><p>In this work, a triple-junction tandem solar cell (TSC) has been designed in order to increase the photovoltaic (PV) performance through utilizing maximum light photons. To create three junctions in this work three subcells have been designed and optimized at its best PV performance. The optimization of all the three subcells have been done through the various variations in the absorber layer like thickness and bulk defect density (BDD). It has been seen that best PV parameters in the top middle and bottom cell are maximum at high thickness and low BDD. For the designing of triple junction tandem configuration, two filtered spectrums (FS1 and FS2) have been calculated for the proper current matching in the three subcells. The optimized triple-junction TSC demonstrates significantly enhanced PV parameters, including high open-circuit voltage (V<sub>OC</sub>- 2.750), short-circuit current density (J<sub>SC</sub>- 16.45 mA/cm<sup>2</sup>), fill factor (FF- 83.40%), and power conversion efficiency (PCE- 37.74%). The strategy of using filtered spectrums and exact design optimization provides a potential road to the next generation of high-efficiency tandem solar cells, furthering the field of renewable energy solutions.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00291-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of TCNQ for surface and interface passivation in inverted perovskite solar cells TCNQ在倒钙钛矿太阳能电池表面和界面钝化中的作用
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2025-01-21 DOI: 10.1007/s40243-024-00280-9
Samuel Abicho, Bekele Hailegnaw, Felix Mayr, Munise Cobet, Cigdem Yumusak, Asefa Sergawi, Teketel Yohannes, Martin Kaltenbrunner, Markus Clark Scharber, Getachew Adam Workneh
{"title":"The role of TCNQ for surface and interface passivation in inverted perovskite solar cells","authors":"Samuel Abicho,&nbsp;Bekele Hailegnaw,&nbsp;Felix Mayr,&nbsp;Munise Cobet,&nbsp;Cigdem Yumusak,&nbsp;Asefa Sergawi,&nbsp;Teketel Yohannes,&nbsp;Martin Kaltenbrunner,&nbsp;Markus Clark Scharber,&nbsp;Getachew Adam Workneh","doi":"10.1007/s40243-024-00280-9","DOIUrl":"10.1007/s40243-024-00280-9","url":null,"abstract":"<div><p>The noticeable growth in the power conversion efficiency of solution-processed organo-inorganic halide perovskite solar cells (OIHPSCs) incited the photovoltaic community to look for limitations that hurdle the commercialization process. The surface and interface defects between the perovskite and electron transport layers are among the main challenges that cause significant non-radiative recombination losses, thereby they result in poor performance and stability. In this work, tetracyanoquinodimethane (TCNQ), a strong electron acceptor molecule, is applied at the interface between the photoactive perovskite and [6,6]-phenyl C<sub>61</sub> butyric acid methyl ester (PCBM) layers to modify the interface, and enhance device performance and stability. Steady-state and time-resolved photoluminescence measurements were used to characterize the role of the TCNQ passivation in reducing non-radiative recombination of charge carriers. Current density versus voltage (J-V) measurements show improvement in devices open-circuit voltage (V<sub>oc</sub>), short-circuit current density (J<sub>sc</sub>), and fill factor (FF) for devices with TCNQ interface passivation, which is attributed to suppressed non-radiative recombination. In addition, a noticeable improvement in the device’s stability was observed. This study reveals the dual role of TCNQ passivation in improving the photoelectric properties and stability of ambient air processed perovskite devices with the pin architecture.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00280-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fe-doped SnO2 nanoparticles: enhancing the photocatalytic hydrogen efficiency, Rhodamine-B dye degradation and visible light absorption 铁掺杂SnO2纳米粒子:提高光催化氢效率,罗丹明- b染料降解和可见光吸收
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2025-01-21 DOI: 10.1007/s40243-024-00288-1
Aashish K Moses, Srinath Ranjan Tripathy, Saroj Sundar Baral
{"title":"Fe-doped SnO2 nanoparticles: enhancing the photocatalytic hydrogen efficiency, Rhodamine-B dye degradation and visible light absorption","authors":"Aashish K Moses,&nbsp;Srinath Ranjan Tripathy,&nbsp;Saroj Sundar Baral","doi":"10.1007/s40243-024-00288-1","DOIUrl":"10.1007/s40243-024-00288-1","url":null,"abstract":"<div><p>The existing energy-wastewater nexus may be resolved using metal oxide semiconductor photocatalysts in photocatalytic hydrogen production and pollutant degradation, which is a clean and sustainable process. SnO<sub>2</sub> is one such well-researched and proven photocatalyst that is now in use, although it only works with ultraviolet light, which only makes up 4% of the total solar energy received. The present research aims to use iron as a dopant to make SnO<sub>2</sub> active under visible light, enhancing reactions like water splitting and dye degradation. The sol-gel method was used to synthesize the photocatalysts. XRD, BET, UV diffuse reflectance spectra, PL spectra, XPS, and SEM micrographs were used to characterize the synthesized photocatalysts. For 7.5 wt% Fe-doped SnO<sub>2</sub>, a remarkable hydrogen generation rate of 18.81 µmol/hr under sunlight was achieved, nearly three times that of pure SnO<sub>2</sub> (5.71 µmol/h). The nanocomposites display excellent photoreactivity towards RhB dye degradation with an optimal concentration of 7.5 wt% Fe-doped SnO<sub>2</sub>. This optimal composite photocatalyst removes 93% of RhB dye on 0.1 g/L photocatalysts in only 60 min under sunlight. Pristine SnO<sub>2</sub> removes 36% of the dye under similar reaction conditions. The photoluminescence spectra of Fe-doped SnO<sub>2</sub> had lower peak locations than the pristine SnO<sub>2,</sub> indicating a decreased rate of charge recombination and increased life duration of the active species. As a result, hydrogen generation rates and dye degradation efficiencies have increased significantly. The photocatalyst’s recyclability study revealed that the photocatalysts can be used efficiently for four cycles without significant reduction in the yield.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00288-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信