Smruti Medha Mishra, Bhabani Swain, Abduk Kareem K. Soopy, Naga Venkateswar Rao Nulakani, Shanavas Shajahan, Inas Taha, Yarjan Abdul Samad, Adel Najar, Dalaver H. Anjum
{"title":"Microscopic insights into the structural and functional properties of organic perovskite materials and devices","authors":"Smruti Medha Mishra, Bhabani Swain, Abduk Kareem K. Soopy, Naga Venkateswar Rao Nulakani, Shanavas Shajahan, Inas Taha, Yarjan Abdul Samad, Adel Najar, Dalaver H. Anjum","doi":"10.1007/s40243-025-00318-6","DOIUrl":null,"url":null,"abstract":"<div><p>Perovskite materials have emerged as a focal point of research due to their exceptional optoelectronic properties and promising applications in photovoltaics, light-emitting diodes, and photodetectors. A thorough microscopic understanding of these materials is crucial for elucidating their intrinsic properties, defect dynamics, and interface behaviors. This paper offers a comprehensive review of advanced microscopic techniques utilized to investigate perovskite materials and devices, with a focus on their structural, morphological, and performance characteristics. The effects of synthesis conditions and electron beam-induced damage in TEM are specifically examined since they may change the actual nature of perovskite materials by causing structural deterioration, phase changes, and defect development. This paper highlights the advantages and limitations of these techniques, offering insights into optimizing imaging conditions to enhance the study of perovskites. Ultimately, improving synthesis methods, defect engineering, and imaging strategies is key to advancing perovskite-based optoelectronic devices.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00318-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00318-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite materials have emerged as a focal point of research due to their exceptional optoelectronic properties and promising applications in photovoltaics, light-emitting diodes, and photodetectors. A thorough microscopic understanding of these materials is crucial for elucidating their intrinsic properties, defect dynamics, and interface behaviors. This paper offers a comprehensive review of advanced microscopic techniques utilized to investigate perovskite materials and devices, with a focus on their structural, morphological, and performance characteristics. The effects of synthesis conditions and electron beam-induced damage in TEM are specifically examined since they may change the actual nature of perovskite materials by causing structural deterioration, phase changes, and defect development. This paper highlights the advantages and limitations of these techniques, offering insights into optimizing imaging conditions to enhance the study of perovskites. Ultimately, improving synthesis methods, defect engineering, and imaging strategies is key to advancing perovskite-based optoelectronic devices.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies