用于可穿戴电子产品的NF-PVDF压电材料增强能量收集:I - V表征和充放电性能

IF 5.5 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ahmed I. Emara, Afaf Farag Shahba, Gehad Ali, Mohamed Mamdouh, Sameh O. Abdellatif, K. Nassar, Tamer Hamouda
{"title":"用于可穿戴电子产品的NF-PVDF压电材料增强能量收集:I - V表征和充放电性能","authors":"Ahmed I. Emara,&nbsp;Afaf Farag Shahba,&nbsp;Gehad Ali,&nbsp;Mohamed Mamdouh,&nbsp;Sameh O. Abdellatif,&nbsp;K. Nassar,&nbsp;Tamer Hamouda","doi":"10.1007/s40243-025-00321-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the utilization of fabricated piezoelectric polyvinylidene fluoride nanofiber (NF-PVDF) materials in wearable electronic sensing applications by investigating their current-voltage (<span>\\(\\:I-V\\)</span>) characteristics under controlled ultra-low-frequency excitation forces. The results demonstrate a significant power harvesting capability, achieving an output power of 0.12 µW/mm<sup>2</sup> at an operating point of 5.04 V and 7.7 µA. Additionally, the piezoelectric harvester was integrated into a charging-discharge circuit alongside a rectifier capacitor and a typical IoT wearable sensor, leveraging the advantages of a flexible substrate. Experimental measurements of the charging and discharging curves confirm the effective energy management of the system, indicating a robust potential for deployment in real-world sensing applications. These findings highlight the promising application of NF-PVDF in sustainable energy harvesting for next-generation wearable technologies.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00321-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced energy harvesting from NF-PVDF piezoelectric material for wearable electronics: I– V characterization and charge-discharge performance\",\"authors\":\"Ahmed I. Emara,&nbsp;Afaf Farag Shahba,&nbsp;Gehad Ali,&nbsp;Mohamed Mamdouh,&nbsp;Sameh O. Abdellatif,&nbsp;K. Nassar,&nbsp;Tamer Hamouda\",\"doi\":\"10.1007/s40243-025-00321-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the utilization of fabricated piezoelectric polyvinylidene fluoride nanofiber (NF-PVDF) materials in wearable electronic sensing applications by investigating their current-voltage (<span>\\\\(\\\\:I-V\\\\)</span>) characteristics under controlled ultra-low-frequency excitation forces. The results demonstrate a significant power harvesting capability, achieving an output power of 0.12 µW/mm<sup>2</sup> at an operating point of 5.04 V and 7.7 µA. Additionally, the piezoelectric harvester was integrated into a charging-discharge circuit alongside a rectifier capacitor and a typical IoT wearable sensor, leveraging the advantages of a flexible substrate. Experimental measurements of the charging and discharging curves confirm the effective energy management of the system, indicating a robust potential for deployment in real-world sensing applications. These findings highlight the promising application of NF-PVDF in sustainable energy harvesting for next-generation wearable technologies.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-025-00321-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-025-00321-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00321-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过研究压电型聚偏氟乙烯纳米纤维(NF-PVDF)材料在可控超低频激励下的电流-电压特性(\(\:I-V\)),探索其在可穿戴电子传感应用中的应用。结果显示了显著的功率收集能力,在5.04 V和7.7 μ a的工作点下实现了0.12 μ W/mm2的输出功率。此外,压电收集器与整流电容器和典型的物联网可穿戴传感器一起集成到充放电电路中,充分利用了柔性基板的优势。充电和放电曲线的实验测量证实了该系统的有效能量管理,表明在实际传感应用中具有强大的部署潜力。这些发现突出了NF-PVDF在下一代可穿戴技术的可持续能量收集中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced energy harvesting from NF-PVDF piezoelectric material for wearable electronics: I– V characterization and charge-discharge performance

This study explores the utilization of fabricated piezoelectric polyvinylidene fluoride nanofiber (NF-PVDF) materials in wearable electronic sensing applications by investigating their current-voltage (\(\:I-V\)) characteristics under controlled ultra-low-frequency excitation forces. The results demonstrate a significant power harvesting capability, achieving an output power of 0.12 µW/mm2 at an operating point of 5.04 V and 7.7 µA. Additionally, the piezoelectric harvester was integrated into a charging-discharge circuit alongside a rectifier capacitor and a typical IoT wearable sensor, leveraging the advantages of a flexible substrate. Experimental measurements of the charging and discharging curves confirm the effective energy management of the system, indicating a robust potential for deployment in real-world sensing applications. These findings highlight the promising application of NF-PVDF in sustainable energy harvesting for next-generation wearable technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信