Madina Bissenova, Nurlan Idrissov, Zhengisbek Kuspanov, Arman Umirzakov, Chingis Daulbayev
{"title":"混合吸附-光催化复合材料:高效水净化的可持续途径","authors":"Madina Bissenova, Nurlan Idrissov, Zhengisbek Kuspanov, Arman Umirzakov, Chingis Daulbayev","doi":"10.1007/s40243-025-00319-5","DOIUrl":null,"url":null,"abstract":"<div><p>The convergence of adsorption and photocatalysis in hybrid composites offers a sustainable and energy-efficient strategy for the removal of persistent organic pollutants from water systems. This review presents a comprehensive analysis of recent advances in adsorption–photocatalysis hybrid materials, focusing on the synergistic mechanisms that enhance pollutant capture, photodegradation, and material regeneration. We classify and evaluate three major categories of composites: carbon-based, metal oxide, and polymeric materials, highlighting their physicochemical characteristics, surface morphologies, and functional architectures. Special attention is given to Z-scheme and type II heterojunctions, plasmonic enhancements, and nanoscale engineering that improve solar light harvesting and charge carrier dynamics. The influence of key environmental parameters such as pH, light intensity, and contaminant load is discussed, along with strategies for material optimization and recyclability. Unlike conventional reviews, this work offers a design-focused and environmentally integrated perspective, emphasizing scalable, low-waste, and sunlight-driven solutions for water purification. The insights provided here aim to guide future research on hybrid systems that contribute to the circular economy and renewable energy-based remediation technologies.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00319-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Hybrid adsorption–photocatalysis composites: a sustainable route for efficient water purification\",\"authors\":\"Madina Bissenova, Nurlan Idrissov, Zhengisbek Kuspanov, Arman Umirzakov, Chingis Daulbayev\",\"doi\":\"10.1007/s40243-025-00319-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The convergence of adsorption and photocatalysis in hybrid composites offers a sustainable and energy-efficient strategy for the removal of persistent organic pollutants from water systems. This review presents a comprehensive analysis of recent advances in adsorption–photocatalysis hybrid materials, focusing on the synergistic mechanisms that enhance pollutant capture, photodegradation, and material regeneration. We classify and evaluate three major categories of composites: carbon-based, metal oxide, and polymeric materials, highlighting their physicochemical characteristics, surface morphologies, and functional architectures. Special attention is given to Z-scheme and type II heterojunctions, plasmonic enhancements, and nanoscale engineering that improve solar light harvesting and charge carrier dynamics. The influence of key environmental parameters such as pH, light intensity, and contaminant load is discussed, along with strategies for material optimization and recyclability. Unlike conventional reviews, this work offers a design-focused and environmentally integrated perspective, emphasizing scalable, low-waste, and sunlight-driven solutions for water purification. The insights provided here aim to guide future research on hybrid systems that contribute to the circular economy and renewable energy-based remediation technologies.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-025-00319-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-025-00319-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00319-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hybrid adsorption–photocatalysis composites: a sustainable route for efficient water purification
The convergence of adsorption and photocatalysis in hybrid composites offers a sustainable and energy-efficient strategy for the removal of persistent organic pollutants from water systems. This review presents a comprehensive analysis of recent advances in adsorption–photocatalysis hybrid materials, focusing on the synergistic mechanisms that enhance pollutant capture, photodegradation, and material regeneration. We classify and evaluate three major categories of composites: carbon-based, metal oxide, and polymeric materials, highlighting their physicochemical characteristics, surface morphologies, and functional architectures. Special attention is given to Z-scheme and type II heterojunctions, plasmonic enhancements, and nanoscale engineering that improve solar light harvesting and charge carrier dynamics. The influence of key environmental parameters such as pH, light intensity, and contaminant load is discussed, along with strategies for material optimization and recyclability. Unlike conventional reviews, this work offers a design-focused and environmentally integrated perspective, emphasizing scalable, low-waste, and sunlight-driven solutions for water purification. The insights provided here aim to guide future research on hybrid systems that contribute to the circular economy and renewable energy-based remediation technologies.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies