Nofrijon Sofyan, Muhammad, Aga Ridhova, Fiona Angellinnov, Mouna M’rad, Akhmad Herman Yuwono, Donanta Dhaneswara, Bambang Priyono, Jeffrey W. Fergus
{"title":"茉莉花提取物介导的tio2纳米颗粒绿色合成及其光电流特性在染料敏化太阳能电池中的应用","authors":"Nofrijon Sofyan, Muhammad, Aga Ridhova, Fiona Angellinnov, Mouna M’rad, Akhmad Herman Yuwono, Donanta Dhaneswara, Bambang Priyono, Jeffrey W. Fergus","doi":"10.1007/s40243-025-00320-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, titanium dioxide nanoparticles (TiO₂ NPs) were green-synthesized using jasmine (<i>Jasminum sambac</i>) flower extracts as the medium with different solvent variation concentrations. The green synthesis was carried out using titanium isopropoxide (TTIP) as a precursor via the sol-gel method. The obtained TiO₂ NPs were characterized using infrared spectroscopy (FTIR), ultraviolet spectroscopy (UV-DRS), X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectroscopy (FESEM/EDX), Raman spectroscopy, and high-resolution transmission electron microscopy/selected area diffraction (HRTEM/SAED). The characterization revealed that the green-synthesized TiO₂ NPs possess a pure tetragonal anatase phase, which belongs to the space group I4<sub>1</sub>/amd. Dye-sensitized solar cell devices were further fabricated using the obtained TiO₂ NPs and sensitized with the commercial dye N719 and a kesumba (<i>Bixa orellana</i>) seed extract as an alternative, inexpensive, yet sustainable natural dye. The highest efficiency of 2.52% was obtained from TiO₂ NPs sensitized using commercial dye N719 and synthesized using jasmine flower extract containing 30% acetylacetone, followed by one containing 50% acetylacetone, which is higher than that of commercial TiO₂ (0.80%). The same materials sensitized using kesumba seed extract resulted in efficiency of 0.22%, 0.08%, and 1.22%, respectively. These findings offer insight and pave the way for more novel, environmentally friendly methods for developing green-synthesizing nanomaterials and natural dye derivatives, ultimately contributing to a sustainable future.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00320-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Jasmine flowers extract mediated green synthesis of tio₂ nanoparticles and their photocurrent characteristics for dye-sensitized solar cell application\",\"authors\":\"Nofrijon Sofyan, Muhammad, Aga Ridhova, Fiona Angellinnov, Mouna M’rad, Akhmad Herman Yuwono, Donanta Dhaneswara, Bambang Priyono, Jeffrey W. Fergus\",\"doi\":\"10.1007/s40243-025-00320-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, titanium dioxide nanoparticles (TiO₂ NPs) were green-synthesized using jasmine (<i>Jasminum sambac</i>) flower extracts as the medium with different solvent variation concentrations. The green synthesis was carried out using titanium isopropoxide (TTIP) as a precursor via the sol-gel method. The obtained TiO₂ NPs were characterized using infrared spectroscopy (FTIR), ultraviolet spectroscopy (UV-DRS), X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectroscopy (FESEM/EDX), Raman spectroscopy, and high-resolution transmission electron microscopy/selected area diffraction (HRTEM/SAED). The characterization revealed that the green-synthesized TiO₂ NPs possess a pure tetragonal anatase phase, which belongs to the space group I4<sub>1</sub>/amd. Dye-sensitized solar cell devices were further fabricated using the obtained TiO₂ NPs and sensitized with the commercial dye N719 and a kesumba (<i>Bixa orellana</i>) seed extract as an alternative, inexpensive, yet sustainable natural dye. The highest efficiency of 2.52% was obtained from TiO₂ NPs sensitized using commercial dye N719 and synthesized using jasmine flower extract containing 30% acetylacetone, followed by one containing 50% acetylacetone, which is higher than that of commercial TiO₂ (0.80%). The same materials sensitized using kesumba seed extract resulted in efficiency of 0.22%, 0.08%, and 1.22%, respectively. These findings offer insight and pave the way for more novel, environmentally friendly methods for developing green-synthesizing nanomaterials and natural dye derivatives, ultimately contributing to a sustainable future.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-025-00320-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-025-00320-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00320-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Jasmine flowers extract mediated green synthesis of tio₂ nanoparticles and their photocurrent characteristics for dye-sensitized solar cell application
In this work, titanium dioxide nanoparticles (TiO₂ NPs) were green-synthesized using jasmine (Jasminum sambac) flower extracts as the medium with different solvent variation concentrations. The green synthesis was carried out using titanium isopropoxide (TTIP) as a precursor via the sol-gel method. The obtained TiO₂ NPs were characterized using infrared spectroscopy (FTIR), ultraviolet spectroscopy (UV-DRS), X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectroscopy (FESEM/EDX), Raman spectroscopy, and high-resolution transmission electron microscopy/selected area diffraction (HRTEM/SAED). The characterization revealed that the green-synthesized TiO₂ NPs possess a pure tetragonal anatase phase, which belongs to the space group I41/amd. Dye-sensitized solar cell devices were further fabricated using the obtained TiO₂ NPs and sensitized with the commercial dye N719 and a kesumba (Bixa orellana) seed extract as an alternative, inexpensive, yet sustainable natural dye. The highest efficiency of 2.52% was obtained from TiO₂ NPs sensitized using commercial dye N719 and synthesized using jasmine flower extract containing 30% acetylacetone, followed by one containing 50% acetylacetone, which is higher than that of commercial TiO₂ (0.80%). The same materials sensitized using kesumba seed extract resulted in efficiency of 0.22%, 0.08%, and 1.22%, respectively. These findings offer insight and pave the way for more novel, environmentally friendly methods for developing green-synthesizing nanomaterials and natural dye derivatives, ultimately contributing to a sustainable future.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies