Hussein Togun, Ali Basem, Muhsin Jaber Jweeg, Ali E. Anqi, Maher T. Alshamkhani, Anirban Chattopadhyay, Bhupendra K. Sharma, Hakeem Niyas, Nirmalendu Biswas, Abdellatif M. Sadeq, Muataz S. Alhassan
{"title":"革命性的电池热管理:混合纳米流体和PCM在圆柱形包冷却","authors":"Hussein Togun, Ali Basem, Muhsin Jaber Jweeg, Ali E. Anqi, Maher T. Alshamkhani, Anirban Chattopadhyay, Bhupendra K. Sharma, Hakeem Niyas, Nirmalendu Biswas, Abdellatif M. Sadeq, Muataz S. Alhassan","doi":"10.1007/s40243-025-00313-x","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal management of cylindrical battery packs, widely used in electric vehicles and energy storage systems, is a critical aspect of ensuring their safety, performance, and longevity. As energy densities increase, effective cooling solutions become essential to address the challenges posed by excessive heat generation and uneven temperature distribution. This review has highlighted the promising potential of hybrid nanofluids and phase change materials (PCMs) in advancing thermal management systems for battery packs. Hybrid nanofluids, offering enhanced heat transfer properties, and PCMs, capable of storing and dissipating latent heat, represent a promising synergy for improving thermal management systems. This review provides a comprehensive analysis of the role of hybrid nanofluids and PCM in addressing the thermal challenges of cylindrical battery packs. The paper discusses heat generation mechanisms, the drawbacks of existing cooling methods, and the advantages of integrating these advanced materials into thermal management systems. By identifying research gaps and opportunities, this review offers a pathway for optimizing battery performance and highlights future research directions necessary for scalable and sustainable solutions. According to this review, future research should concentrate on creating hybrid cooling systems that effectively combine active, passive, and hybrid cooling techniques. Additional advancements in computer modeling, nanotechnology, and material science will be crucial to achieving the full potential of these innovative materials and overcoming existing limitations.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00313-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing battery thermal management: hybrid nanofluids and PCM in cylindrical pack cooling\",\"authors\":\"Hussein Togun, Ali Basem, Muhsin Jaber Jweeg, Ali E. Anqi, Maher T. Alshamkhani, Anirban Chattopadhyay, Bhupendra K. Sharma, Hakeem Niyas, Nirmalendu Biswas, Abdellatif M. Sadeq, Muataz S. Alhassan\",\"doi\":\"10.1007/s40243-025-00313-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thermal management of cylindrical battery packs, widely used in electric vehicles and energy storage systems, is a critical aspect of ensuring their safety, performance, and longevity. As energy densities increase, effective cooling solutions become essential to address the challenges posed by excessive heat generation and uneven temperature distribution. This review has highlighted the promising potential of hybrid nanofluids and phase change materials (PCMs) in advancing thermal management systems for battery packs. Hybrid nanofluids, offering enhanced heat transfer properties, and PCMs, capable of storing and dissipating latent heat, represent a promising synergy for improving thermal management systems. This review provides a comprehensive analysis of the role of hybrid nanofluids and PCM in addressing the thermal challenges of cylindrical battery packs. The paper discusses heat generation mechanisms, the drawbacks of existing cooling methods, and the advantages of integrating these advanced materials into thermal management systems. By identifying research gaps and opportunities, this review offers a pathway for optimizing battery performance and highlights future research directions necessary for scalable and sustainable solutions. According to this review, future research should concentrate on creating hybrid cooling systems that effectively combine active, passive, and hybrid cooling techniques. Additional advancements in computer modeling, nanotechnology, and material science will be crucial to achieving the full potential of these innovative materials and overcoming existing limitations.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-025-00313-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-025-00313-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00313-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Revolutionizing battery thermal management: hybrid nanofluids and PCM in cylindrical pack cooling
The thermal management of cylindrical battery packs, widely used in electric vehicles and energy storage systems, is a critical aspect of ensuring their safety, performance, and longevity. As energy densities increase, effective cooling solutions become essential to address the challenges posed by excessive heat generation and uneven temperature distribution. This review has highlighted the promising potential of hybrid nanofluids and phase change materials (PCMs) in advancing thermal management systems for battery packs. Hybrid nanofluids, offering enhanced heat transfer properties, and PCMs, capable of storing and dissipating latent heat, represent a promising synergy for improving thermal management systems. This review provides a comprehensive analysis of the role of hybrid nanofluids and PCM in addressing the thermal challenges of cylindrical battery packs. The paper discusses heat generation mechanisms, the drawbacks of existing cooling methods, and the advantages of integrating these advanced materials into thermal management systems. By identifying research gaps and opportunities, this review offers a pathway for optimizing battery performance and highlights future research directions necessary for scalable and sustainable solutions. According to this review, future research should concentrate on creating hybrid cooling systems that effectively combine active, passive, and hybrid cooling techniques. Additional advancements in computer modeling, nanotechnology, and material science will be crucial to achieving the full potential of these innovative materials and overcoming existing limitations.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies