革命性的电池热管理:混合纳米流体和PCM在圆柱形包冷却

IF 5.5 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hussein Togun, Ali Basem, Muhsin Jaber Jweeg, Ali E. Anqi, Maher T. Alshamkhani, Anirban Chattopadhyay, Bhupendra K. Sharma, Hakeem Niyas, Nirmalendu Biswas, Abdellatif M. Sadeq, Muataz S. Alhassan
{"title":"革命性的电池热管理:混合纳米流体和PCM在圆柱形包冷却","authors":"Hussein Togun,&nbsp;Ali Basem,&nbsp;Muhsin Jaber Jweeg,&nbsp;Ali E. Anqi,&nbsp;Maher T. Alshamkhani,&nbsp;Anirban Chattopadhyay,&nbsp;Bhupendra K. Sharma,&nbsp;Hakeem Niyas,&nbsp;Nirmalendu Biswas,&nbsp;Abdellatif M. Sadeq,&nbsp;Muataz S. Alhassan","doi":"10.1007/s40243-025-00313-x","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal management of cylindrical battery packs, widely used in electric vehicles and energy storage systems, is a critical aspect of ensuring their safety, performance, and longevity. As energy densities increase, effective cooling solutions become essential to address the challenges posed by excessive heat generation and uneven temperature distribution. This review has highlighted the promising potential of hybrid nanofluids and phase change materials (PCMs) in advancing thermal management systems for battery packs. Hybrid nanofluids, offering enhanced heat transfer properties, and PCMs, capable of storing and dissipating latent heat, represent a promising synergy for improving thermal management systems. This review provides a comprehensive analysis of the role of hybrid nanofluids and PCM in addressing the thermal challenges of cylindrical battery packs. The paper discusses heat generation mechanisms, the drawbacks of existing cooling methods, and the advantages of integrating these advanced materials into thermal management systems. By identifying research gaps and opportunities, this review offers a pathway for optimizing battery performance and highlights future research directions necessary for scalable and sustainable solutions. According to this review, future research should concentrate on creating hybrid cooling systems that effectively combine active, passive, and hybrid cooling techniques. Additional advancements in computer modeling, nanotechnology, and material science will be crucial to achieving the full potential of these innovative materials and overcoming existing limitations.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00313-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing battery thermal management: hybrid nanofluids and PCM in cylindrical pack cooling\",\"authors\":\"Hussein Togun,&nbsp;Ali Basem,&nbsp;Muhsin Jaber Jweeg,&nbsp;Ali E. Anqi,&nbsp;Maher T. Alshamkhani,&nbsp;Anirban Chattopadhyay,&nbsp;Bhupendra K. Sharma,&nbsp;Hakeem Niyas,&nbsp;Nirmalendu Biswas,&nbsp;Abdellatif M. Sadeq,&nbsp;Muataz S. Alhassan\",\"doi\":\"10.1007/s40243-025-00313-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thermal management of cylindrical battery packs, widely used in electric vehicles and energy storage systems, is a critical aspect of ensuring their safety, performance, and longevity. As energy densities increase, effective cooling solutions become essential to address the challenges posed by excessive heat generation and uneven temperature distribution. This review has highlighted the promising potential of hybrid nanofluids and phase change materials (PCMs) in advancing thermal management systems for battery packs. Hybrid nanofluids, offering enhanced heat transfer properties, and PCMs, capable of storing and dissipating latent heat, represent a promising synergy for improving thermal management systems. This review provides a comprehensive analysis of the role of hybrid nanofluids and PCM in addressing the thermal challenges of cylindrical battery packs. The paper discusses heat generation mechanisms, the drawbacks of existing cooling methods, and the advantages of integrating these advanced materials into thermal management systems. By identifying research gaps and opportunities, this review offers a pathway for optimizing battery performance and highlights future research directions necessary for scalable and sustainable solutions. According to this review, future research should concentrate on creating hybrid cooling systems that effectively combine active, passive, and hybrid cooling techniques. Additional advancements in computer modeling, nanotechnology, and material science will be crucial to achieving the full potential of these innovative materials and overcoming existing limitations.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-025-00313-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-025-00313-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00313-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

圆柱形电池组广泛应用于电动汽车和储能系统,其热管理是确保其安全性、性能和寿命的关键方面。随着能量密度的增加,有效的冷却解决方案对于解决产生过多热量和温度分布不均匀带来的挑战至关重要。本文综述了混合纳米流体和相变材料(PCMs)在推进电池组热管理系统方面的巨大潜力。混合纳米流体,提供增强的传热性能,和pcm,能够储存和消散潜热,代表了一个有希望的协同作用,以改善热管理系统。本文全面分析了混合纳米流体和PCM在解决圆柱形电池组热挑战方面的作用。本文讨论了热的产生机制,现有冷却方法的缺点,以及将这些先进材料集成到热管理系统中的优势。通过确定研究差距和机会,本综述为优化电池性能提供了一条途径,并强调了可扩展和可持续解决方案所需的未来研究方向。根据这篇综述,未来的研究应该集中在创造混合冷却系统,有效地结合主动,被动和混合冷却技术。计算机建模、纳米技术和材料科学的进一步进步对于实现这些创新材料的全部潜力和克服现有限制至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revolutionizing battery thermal management: hybrid nanofluids and PCM in cylindrical pack cooling

The thermal management of cylindrical battery packs, widely used in electric vehicles and energy storage systems, is a critical aspect of ensuring their safety, performance, and longevity. As energy densities increase, effective cooling solutions become essential to address the challenges posed by excessive heat generation and uneven temperature distribution. This review has highlighted the promising potential of hybrid nanofluids and phase change materials (PCMs) in advancing thermal management systems for battery packs. Hybrid nanofluids, offering enhanced heat transfer properties, and PCMs, capable of storing and dissipating latent heat, represent a promising synergy for improving thermal management systems. This review provides a comprehensive analysis of the role of hybrid nanofluids and PCM in addressing the thermal challenges of cylindrical battery packs. The paper discusses heat generation mechanisms, the drawbacks of existing cooling methods, and the advantages of integrating these advanced materials into thermal management systems. By identifying research gaps and opportunities, this review offers a pathway for optimizing battery performance and highlights future research directions necessary for scalable and sustainable solutions. According to this review, future research should concentrate on creating hybrid cooling systems that effectively combine active, passive, and hybrid cooling techniques. Additional advancements in computer modeling, nanotechnology, and material science will be crucial to achieving the full potential of these innovative materials and overcoming existing limitations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信