Materials for Renewable and Sustainable Energy最新文献

筛选
英文 中文
Sustainable construction: the use of cork material in the building industry 可持续建筑:软木材料在建筑业中的应用
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2024-08-19 DOI: 10.1007/s40243-024-00270-x
Madhura Yadav, Ishika Singhal
{"title":"Sustainable construction: the use of cork material in the building industry","authors":"Madhura Yadav,&nbsp;Ishika Singhal","doi":"10.1007/s40243-024-00270-x","DOIUrl":"10.1007/s40243-024-00270-x","url":null,"abstract":"<div><p>In the ongoing quest for sustainable construction practices, the exploration of innovative materials is paramount, and cork has emerged as a remarkable eco-friendly building material with vast untapped potential. Cork, harvested from the bark of cork oak trees without harming them, possesses a unique combination of qualities that make it an ideal candidate for environmentally conscious construction. Cork is exceptionally renewable and biodegradable. What makes cork even more promising is its compatibility with various existing construction materials, including cement, plastic, and plywood. By integrating cork with these materials, we can improve their structural integrity, thermal performance, and acoustic insulation, while reducing their environmental impact. By harnessing the potential of cork and seamlessly merging its exceptional performance with a planet-conscious approach, the construction industry can significantly reduce its ecological footprint. Cork emerges as a compelling contender in shaping a greener, more resilient construction landscape, offering a sustainable alternative that aligns with our growing commitment to environmentally responsible building practices. This eco-friendly material not only benefits the environment but also enhances the overall quality and sustainability of our built environment.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 3","pages":"375 - 383"},"PeriodicalIF":3.6,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00270-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of high sulfonated poly(ether ether ketone) improved with microcrystalline cellulose and 2,3-dialdehyde cellulose for proton exchange membranes 用微晶纤维素和 2,3-二醛纤维素改善质子交换膜用高磺化聚(醚醚酮)的性能
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2024-08-10 DOI: 10.1007/s40243-024-00267-6
Mohamed Amine Ben Moussa, Zakarya Ahmed, Khaled Charradi, Boutheina Ben Fraj, Sami Boufi, Andreas Koschella, Thomas Heinze, Sherif M. A. S. Keshk, Ibtissem Ben Assaker
{"title":"Performance of high sulfonated poly(ether ether ketone) improved with microcrystalline cellulose and 2,3-dialdehyde cellulose for proton exchange membranes","authors":"Mohamed Amine Ben Moussa,&nbsp;Zakarya Ahmed,&nbsp;Khaled Charradi,&nbsp;Boutheina Ben Fraj,&nbsp;Sami Boufi,&nbsp;Andreas Koschella,&nbsp;Thomas Heinze,&nbsp;Sherif M. A. S. Keshk,&nbsp;Ibtissem Ben Assaker","doi":"10.1007/s40243-024-00267-6","DOIUrl":"10.1007/s40243-024-00267-6","url":null,"abstract":"<div><p>Sulfonated poly (ether ether ketone) (SPEEK) has received substantial attention for its potential to improve the electrochemical behavior and thermomechanical capabilities of direct methanol fuel cells. This study examines how the integration by solution casting of microcrystalline cellulose (MCC) and 2,3-dialdehyde cellulose (DAC) onto highly sulfonated PEEK (with a sulfonation degree of 80%) affects its physicochemical properties and morphological structures. The mechanical attributes and proton conductivity of the polymer matrix are impacted by MCC and DAC inclusion into SPEEK membrane. The maximum proton conductivity was seen in the SPEEK/MCC membranes at 70 °C (up to 0.1 S cm<sup>−1</sup>). The proton conductivity in methanol vapor was increased by SPEEK/DAC membranes at high temperatures as opposed to pristine SPEEK and SPEEK/MCC membranes.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 3","pages":"319 - 331"},"PeriodicalIF":3.6,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00267-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141920805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of scandium concentration on the performances of cantilever based AlN unimorph piezoelectric energy harvester with silicon nitride substrate 钪浓度对氮化硅衬底悬臂式氮化铝非晶压电能量收集器性能的影响
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2024-07-27 DOI: 10.1007/s40243-024-00272-9
Tasnia Sultana, Manjurul Gani, Sharmin Shultana, Abdullah Al Miraj, Asif Mahbub Uddin, Joyprokash Chakrabartty
{"title":"Effect of scandium concentration on the performances of cantilever based AlN unimorph piezoelectric energy harvester with silicon nitride substrate","authors":"Tasnia Sultana,&nbsp;Manjurul Gani,&nbsp;Sharmin Shultana,&nbsp;Abdullah Al Miraj,&nbsp;Asif Mahbub Uddin,&nbsp;Joyprokash Chakrabartty","doi":"10.1007/s40243-024-00272-9","DOIUrl":"10.1007/s40243-024-00272-9","url":null,"abstract":"<div><p>Microelectromechanical systems (MEMS) offer its ability to sense, control and actuate on sub-micron scale and exhibit its effect on macro scale. To implement any specific MEMS system, small, efficient and long-lifespan micro power sources are required. Piezoelectric energy harvester (PEH) along with radioactive source is one of the most promising approaches to harness electrical energy at micro to millimeter range. In this report, a scandium (Sc) doped Aluminium Nitride (AlN) unimorph piezoelectric energy harvester has been demonstrated. Unimorph piezoelectric layer is built on Silicon Nitride (Si<sub>3</sub>N<sub>4</sub>) substrate platform that act as cantilever beam and that can be vibrated by inbuilt radioactive system. In particular, Si<sub>3</sub>N<sub>4</sub> as cantilever material and the impact of Sc doping concentration on electrical and mechanical properties of AlN piezoelectric thin film materials have been studied in MATLAB simulation platform. Results obtained from numerical study suggests that the proposed energy harvester model composed of AlScN unimorph piezoelectric (with 10% Sc doping concentration, Sc-10%) layer and Si<sub>3</sub>N<sub>4</sub> cantilever can yield a maximum power output of ~ 19.33 μW and overall mechanical energy conversion efficiency of ~ 91.07%. These are the maximum output power and mechanical energy conversion efficiency numerically obtained from Sc doped AlN piezoelectric energy harvester systems to the best of our knowledge.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 3","pages":"397 - 407"},"PeriodicalIF":3.6,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00272-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced electrochemical validation of metal organic frameworks-derived TiO2/Fe-TiO2 as an active electrode for supercapacitors 将金属有机框架衍生的 TiO2/Fe-TiO2 作为超级电容器的活性电极的电化学验证得到加强
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2024-07-24 DOI: 10.1007/s40243-024-00269-4
Nizamudeen Cherupurakal, R. Krishnapriya, Arjunkumar Bojarajan, Tholkappiyan Ramachandran, Sambasivam Sangaraju, Mohammad Sayem Mozumder, Abdel-Hamid I. Mourad
{"title":"Enhanced electrochemical validation of metal organic frameworks-derived TiO2/Fe-TiO2 as an active electrode for supercapacitors","authors":"Nizamudeen Cherupurakal,&nbsp;R. Krishnapriya,&nbsp;Arjunkumar Bojarajan,&nbsp;Tholkappiyan Ramachandran,&nbsp;Sambasivam Sangaraju,&nbsp;Mohammad Sayem Mozumder,&nbsp;Abdel-Hamid I. Mourad","doi":"10.1007/s40243-024-00269-4","DOIUrl":"10.1007/s40243-024-00269-4","url":null,"abstract":"<div><p>Developing supercapacitor materials that are both efficient and durable, with high cycle life and specific energy, poses a significant challenge due to issues in electrodes such as volume expansion and electrode degradation that occur over time. This work reports a simple, novel, and cost-effective synthesis method to fabricate high surface area “Iron (Fe) doped TiO<sub>2</sub> materials” <i>via</i> the metal-organic framework (MOF) route for supercapacitor application. Morphological analysis revealed a disc-like shaped pattern for pristine TiO<sub>2</sub> (PT), and a cuboid form for Fe-doped TiO<sub>2</sub> (FeT). The electrochemical investigation of MOF-derived PT and FeT electrode materials demonstrated the superior performance of FeT. Cyclic Voltammetry revealed enhanced electrochemical properties in FeT. Galvanostatic charge-discharge measurements confirmed FeT’s higher energy storage capacity, reaching a maximum specific capacitance of 925 Fg<sup>− 1</sup>. Long-term cycling tests exhibited excellent stability, with FeT retaining 67% of its initial capacitance after 6000 cycles and showing prolonged self-discharge. Overall, the results underscore the potential of Fe-doped TiO<sub>2</sub> for high-performance supercapacitors.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 3","pages":"361 - 373"},"PeriodicalIF":3.6,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00269-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The photothermal properties of hydrogel nanocomposite embedded with ZnO/CuO based on PVA/GA/activated carbon for solar-driven interfacial evaporation 基于 PVA/GA/ 活性炭的嵌入 ZnO/CuO 的水凝胶纳米复合材料的光热特性,用于太阳能驱动的界面蒸发
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2024-07-20 DOI: 10.1007/s40243-024-00271-w
M. Fargharazi, M. M. Bagheri-Mohagheghi
{"title":"The photothermal properties of hydrogel nanocomposite embedded with ZnO/CuO based on PVA/GA/activated carbon for solar-driven interfacial evaporation","authors":"M. Fargharazi,&nbsp;M. M. Bagheri-Mohagheghi","doi":"10.1007/s40243-024-00271-w","DOIUrl":"10.1007/s40243-024-00271-w","url":null,"abstract":"<div><p>Using the renewable energy, especially solar energy, is an environmental-friendly approach for seawater desalination. Solar evaporation is a promising freshwater harvesting strategy rich in energy, including solar and water energy. Herein, we propose a solar evaporation hybrid hydrogel including polyvinyl alcohol (PVA) and glutaraldehyde (GA) as a polymer network, semiconductor oxide nanoparticles (ZnO, CuO) and activated carbon as a photothermal material. Structural properties of hybrid hydrogel were characterized by X-ray diffraction (XRD) analysis, surface morphology by field emission scanning electron microscope (FE-SEM), chemical bonding by Fourier transform infrared spectroscopy (FTIR) and optical absorption and absorption coefficient (α) of components by UV–Vis spectroscopy. The result showed in visible region, PVA:ZnO:AC hydrogel nanocomposite has a strong absorption (55%) compare of the PVA:CuO:AC hydrogel nanocomposite (35%). In addition, by distillation measurements, the evaporator system demonstrated for PVA:CuO:AC and PVA:ZnO:AC Hydrogel an evaporation rate of 2.29 kg m<sup>−2</sup> h<sup>−1</sup> and 5.19 kg m<sup>−2</sup> h<sup>−1</sup> with the evaporation efficiency of 30.66% and 70.80%, respectively, under 0.1 sun irradiation. For PVA:CuO:AC hydrogel, the hardness of Caspian seawater decreased from 6648 to 115 ppm and ion conductance from 8641 (μS) to 244 (μS) and for the PVA:ZnO:AC Hydrogel decreased to 97 ppm and ion conductance to 206 (μS). Experiments showed that with changing type of the ZnO or CuO semiconductor oxide nanoparticles can effectively on regulate the optical properties of the evaporator. Eventually, this work begins a new point of synthesizing cost-effective photothermal absorbers based on metal oxides material and activated carbon nanocomposite.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 3","pages":"385 - 396"},"PeriodicalIF":3.6,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00271-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation and development of composite materials for thermally driven and storage-integrated cooling technologies: a review 热驱动和存储集成冷却技术复合材料的配制与开发:综述
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2024-07-15 DOI: 10.1007/s40243-024-00268-5
Emiliano Borri, Svetlana Ushak, Yongliang Li, Andrea Frazzica, Yannan Zhang, Yanio E. Milian, Mario Grageda, Dacheng Li, Luisa F. Cabeza, Vincenza Brancato
{"title":"Formulation and development of composite materials for thermally driven and storage-integrated cooling technologies: a review","authors":"Emiliano Borri,&nbsp;Svetlana Ushak,&nbsp;Yongliang Li,&nbsp;Andrea Frazzica,&nbsp;Yannan Zhang,&nbsp;Yanio E. Milian,&nbsp;Mario Grageda,&nbsp;Dacheng Li,&nbsp;Luisa F. Cabeza,&nbsp;Vincenza Brancato","doi":"10.1007/s40243-024-00268-5","DOIUrl":"10.1007/s40243-024-00268-5","url":null,"abstract":"<div><p>The energy consumption for cooling takes up 50% of all the consumed final energy in Europe, which still highly depends on the utilization of fossil fuels. Thus, it is required to propose and develop new technologies for cooling driven by renewable energy. Also, thermal energy storage is an emerging technology to relocate intermittent low-grade heat source, like solar thermal energy and industrial waste heat as well as to exploit off-peak electricity, for cooling applications. This review aims to summarize the recent advances in thermally driven cooling and cold storage technologies, focusing on the formation and fabrication of adopted composites materials, including sorption materials, phase change materials, and slurries. Herein, first the classifications, selection criteria, and properties for these three types of materials is discussed. Then, the application potentials of all the materials are prospected in terms of economic analysis and sustainability.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 3","pages":"333 - 360"},"PeriodicalIF":3.6,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00268-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141647546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Nafion nanocomposite membranes embedded with TiO2-decorated MWCNTs for high-temperature/low relative humidity fuel cell systems 用于高温/低相对湿度燃料电池系统的嵌入了 TiO2 装饰的 MWCNT 的新型 Nafion 纳米复合膜
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2024-06-06 DOI: 10.1007/s40243-024-00266-7
Isabella Nicotera, Luigi Coppola, Cataldo Simari
{"title":"Novel Nafion nanocomposite membranes embedded with TiO2-decorated MWCNTs for high-temperature/low relative humidity fuel cell systems","authors":"Isabella Nicotera,&nbsp;Luigi Coppola,&nbsp;Cataldo Simari","doi":"10.1007/s40243-024-00266-7","DOIUrl":"10.1007/s40243-024-00266-7","url":null,"abstract":"<div><p>Extending the operation of proton exchange membrane fuel cells (PEMFCs) at high temperature (i.e., 120 °C) and/or low relative humidity (&lt; 50% RH) remains a significant challenge due to dehydration and subsequent performance failure of the Nafion electrolyte. We approached this problem by integrating the Nafion matrix with a novel hybrid nanofiller, created through direct growth of TiO<sub>2</sub> nanoparticles on the surface of carbon nanotubes. This synthetic approach allowed to preserve an effective nanodispersion of Titania particles in the hosting matrix, thereby boosting dimensional stability, hydrophilicity, and physiochemical properties of the Nafion/MWCNTs-TiO<sub>2</sub> (NMT-x) nanocomposites compared to parental Nafion. At optimal concentration (i.e., 3 wt% with respect to the polymer), the nanocomposite membrane exhibited high transport characteristics with impressive water retention capabilities, resulting in a proton conductivity of 8.3 mS cm<sup>− 1</sup> at 80 °C and 20% RH. The Titania nanoparticles plays a key role in retaining water molecules even under dehydrating conditions, while also directly contributing to proton transport. Additionally, the long carbon nanotubes promote the formation of additional paths for proton conductivity. These combined features enabled the NMT-3 membrane to achieve a maximum power output of 307.7 mW/cm<sup>2</sup> in a single H<sub>2</sub>/air fuel cell (5 cm<sup>2</sup> active electrode area and 0.5 mg Pt/cm<sup>2</sup> at both electrodes) under very challenging conditions, specifically at 120 °C and 30% RH. This represents a significant advancement towards overcoming the limitations of traditional Nafion membranes and opens up new possibilities for high-temperature, low-humidity H<sub>2</sub>/air fuel cell applications.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 3","pages":"307 - 318"},"PeriodicalIF":3.6,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00266-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141378499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triboelectric power generation performance of polyvinyl alcohol using ZnO–CuO–AgO trimetallic nanoparticles 使用 ZnO-CuO-AgO 三金属纳米粒子的聚乙烯醇三电发电性能
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2024-05-21 DOI: 10.1007/s40243-024-00264-9
Swathi Yempally, Sumalatha Bonthula, Deepalekshmi Ponnamma
{"title":"Triboelectric power generation performance of polyvinyl alcohol using ZnO–CuO–AgO trimetallic nanoparticles","authors":"Swathi Yempally,&nbsp;Sumalatha Bonthula,&nbsp;Deepalekshmi Ponnamma","doi":"10.1007/s40243-024-00264-9","DOIUrl":"10.1007/s40243-024-00264-9","url":null,"abstract":"<div><p>Triboelectric nanogenerators (TENGs), a new technology for gathering sustainable energy, have attracted much scientific interest. In this study, we describe a unique method for modifying the triboelectric power generation performance of Polyvinyl Alcohol (PVA) by adding ZnO–CuO–AgO (ZCA) trimetallic nanoparticles to improve the performance of TENGs and answer the requirement for ecologically benign and biodegradable materials. Hydrothermal synthesis adopted to create ZnO–CuO–AgO trimetallic nanoparticles ensures a distinctive structure with a large surface area, essential for enhancing triboelectric power generation. From the AFM results, it is evident that 1% PVA/ZCA showed the highest output voltage of 0.27V. Despite following the general trend, at higher concentrations of ZCA nanofiller in the PVA matrix, the enhancement of output voltage is not observed, which can be attributed to the non-uniform distribution. The effect of spin-coated film thickness and nanoparticle concentration on the triboelectric performance of the PVA nanogenerator is studied by monitoring the open-circuit voltage in response to various mechanical stimuli. Finally, the developed biodegradable nanogenerators in this study can be used for sustainable energy harvesting applications such as wearable electronics, self-powered sensors, and environmental monitoring systems.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 2","pages":"265 - 277"},"PeriodicalIF":3.6,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00264-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141115311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoporous Pdx-Nix aerogels for electrocatalytic evaluation of urea-assisted electrolysis 用于尿素辅助电解电催化评估的介孔 Pdx-Nix 气凝胶
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2024-05-17 DOI: 10.1007/s40243-024-00265-8
A. Rodríguez-Buenrostro, A. Martínez-Lázaro, M. V. Contreras-Martínez, Ashutosh Sharma, G. Luna Barcenas, Goldie oza, A. Arenillas, J. Ledesma-García, L. G. Arriaga
{"title":"Mesoporous Pdx-Nix aerogels for electrocatalytic evaluation of urea-assisted electrolysis","authors":"A. Rodríguez-Buenrostro,&nbsp;A. Martínez-Lázaro,&nbsp;M. V. Contreras-Martínez,&nbsp;Ashutosh Sharma,&nbsp;G. Luna Barcenas,&nbsp;Goldie oza,&nbsp;A. Arenillas,&nbsp;J. Ledesma-García,&nbsp;L. G. Arriaga","doi":"10.1007/s40243-024-00265-8","DOIUrl":"10.1007/s40243-024-00265-8","url":null,"abstract":"<div><p>This work presents the synthesis and evaluation of Pd-Ni aerogels toward the urea oxidation reaction (UOR). The incorporation of Ni led to a 0.13 V reduction in the energy required for the oxidation and reduction of PdO compared to monometallic Pd, both in alkaline medium with and without urea. Varying the Ni ratios in Pd (Pd-Ni 4:1, Pd-Ni 1:1, and Pd-Ni 1:4) led to significant changes in the electrochemical behaviour. In alkaline medium without urea, PdNi 4:1 showed the formation of NiOOH at 1.35 V, which promoted oxygen diffusion on the electrode surface and increased the current density, confirming the increase in the active sites of NiOOH and NiPdOOH and enabling urea-based electrolysis at these sites. While palladium aerogels alone are ineffective for UOR, the presence of nickel plays a key role in enhancing the UOR efficiency. On the other hand, physicochemical characterisation revealed that PdNi 4:1 has a crystal size of 4.37 nm and a larger shift in the 2θ positions of the (111) and (200) planes, which favours electronic changes that were investigated by XPS. These changes affected the electrocatalytic activity, which is primarily related to electronic effects. The results of SEM and TEM studies and nitrogen adsorption-desorption isotherm confirmed that the aerogels are highly porous and have an effective surface area and abundant active sites for reactions that allow efficient mass transfer and low diffusion resistance. TEM observations revealed interconnected nanochains indicating optimal electrocatalytic activity for both ORR and UOR due to high mass transfer. These interconnected networks are crucial for improving electrocatalytic activity in the urea oxidation reaction.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 2","pages":"255 - 264"},"PeriodicalIF":3.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00265-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140962788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of rice husk biochar briquettes with municipal solid waste cassava, sweet potato and matooke peelings as binders 以城市固体废弃物木薯、甘薯和马铃薯皮为粘合剂的稻壳生物炭块的特性
IF 3.6
Materials for Renewable and Sustainable Energy Pub Date : 2024-05-15 DOI: 10.1007/s40243-024-00262-x
Michael Lubwama, Agatha Birungi, Andrew Nuwamanya, Vianney Andrew Yiga
{"title":"Characteristics of rice husk biochar briquettes with municipal solid waste cassava, sweet potato and matooke peelings as binders","authors":"Michael Lubwama,&nbsp;Agatha Birungi,&nbsp;Andrew Nuwamanya,&nbsp;Vianney Andrew Yiga","doi":"10.1007/s40243-024-00262-x","DOIUrl":"10.1007/s40243-024-00262-x","url":null,"abstract":"<div><p>Rice husks are not readily biodegradable making their disposal challenging due to the common disposal method of open burning which has negative environmental effects. Additionally, banana, sweet potato and cassava peelings form a large percentage of organic municipal solid waste. Therefore, this study developed rice husk biochar briquettes with organic municipal peelings waste as binders. Rice husks biochar was formed via carbonization processes in a step-down kiln at temperatures ranging between 400 and 500 °C. Organic binders were mixed with the rice husk biochar at different ratios of 10% and 15% before being compacted at a pressure ≤ 7 MPa into briquettes. Thermogravimetric results showed that the developed briquettes had high ash contents ranging from 44% to 47%. Rice husk biochar briquettes with the highest particle density were observed for briquettes with 15% cassava peel binder at 427.1 kg/m<sup>3</sup>. The highest HHV and maximum attainable flame temperature of 21.75 MJ/kg and 828.7 °C were obtained for rice husk biochar briquettes with 15% matooke peeling organic binder. For all rice husk biochar briquettes, increasing the organic peeling binder had a positive impact of reducing the ash content, while at the same time increasing the peak temperatures, thus contributing to their enhanced thermal stability.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 2","pages":"243 - 254"},"PeriodicalIF":3.6,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00262-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140973285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信