An implantable glucose enzymatic biofuel cell integrated with flexible gold-coated carbon foam and carbon thread bioelectrodes grafted inside a living rat

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. Vanmathi, U. S. Jayapiriya, Pravesh Sharma, Onkar Prakash Kulkarni, Sanket Goel
{"title":"An implantable glucose enzymatic biofuel cell integrated with flexible gold-coated carbon foam and carbon thread bioelectrodes grafted inside a living rat","authors":"S. Vanmathi,&nbsp;U. S. Jayapiriya,&nbsp;Pravesh Sharma,&nbsp;Onkar Prakash Kulkarni,&nbsp;Sanket Goel","doi":"10.1007/s40243-025-00297-8","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of long-term implants has increased the urgent need for self-powered biomedical devices. Utilize enzymes to expedite the process of biofuel oxidation. These systems frequently make use of glucose oxidase. A possible solution involves glucose biofuel cells powered by the glucose found in physiological fluids. Biocompatible substances like carbon electrode designs help to transport electrons from the biological reactions to the external circuit as efficiently as possible while maximizing surface area. Despite advances in implantable electrodes, developing miniaturized and flexible electrodes remains challenging. In this work, a metal-coated flexible carbon thread and foam bioelectrode are fabricated and successfully implanted inside a living and freely moving rat. These electrodes are prepared using gold nanostructures as electron enhancers, a negatively charged conducting polymer, a biocompatible redox mediator, and enzymes as biocatalysts. The carbon foam-based enzymatic biofuel cell produces in vitro and in vivo settings, generates a power density of 165 µW/cm<sup>2</sup> and 285 µW/cm<sup>2</sup>, and the carbon thread-based fuel cell produces a power density of 98 µW/cm<sup>2</sup> and 180 µW/cm<sup>2</sup> in vitro and in vivo environments, respectively. This work paves the way for the possible use of inexpensive electrodes for subdermal implantable microsystems.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00297-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00297-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of long-term implants has increased the urgent need for self-powered biomedical devices. Utilize enzymes to expedite the process of biofuel oxidation. These systems frequently make use of glucose oxidase. A possible solution involves glucose biofuel cells powered by the glucose found in physiological fluids. Biocompatible substances like carbon electrode designs help to transport electrons from the biological reactions to the external circuit as efficiently as possible while maximizing surface area. Despite advances in implantable electrodes, developing miniaturized and flexible electrodes remains challenging. In this work, a metal-coated flexible carbon thread and foam bioelectrode are fabricated and successfully implanted inside a living and freely moving rat. These electrodes are prepared using gold nanostructures as electron enhancers, a negatively charged conducting polymer, a biocompatible redox mediator, and enzymes as biocatalysts. The carbon foam-based enzymatic biofuel cell produces in vitro and in vivo settings, generates a power density of 165 µW/cm2 and 285 µW/cm2, and the carbon thread-based fuel cell produces a power density of 98 µW/cm2 and 180 µW/cm2 in vitro and in vivo environments, respectively. This work paves the way for the possible use of inexpensive electrodes for subdermal implantable microsystems.

一种可植入的葡萄糖酶生物燃料电池,集成了柔性金涂层碳泡沫和碳线生物电极,移植到活老鼠体内
长期植入物的出现增加了对自供电生物医学设备的迫切需求。利用酶加速生物燃料氧化过程。这些系统经常利用葡萄糖氧化酶。一种可能的解决方案是利用生理液体中的葡萄糖作为燃料的葡萄糖生物燃料电池。像碳电极设计这样的生物相容性物质有助于将电子从生物反应尽可能有效地传输到外部电路,同时最大化表面积。尽管在植入式电极方面取得了进展,但开发小型化和柔性电极仍然具有挑战性。在这项工作中,制造了一种金属涂层的柔性碳线和泡沫生物电极,并成功地植入了一只活的、自由活动的大鼠体内。这些电极是用金纳米结构作为电子增强剂、带负电荷的导电聚合物、生物相容性氧化还原介质和酶作为生物催化剂制备的。基于碳泡沫的酶促生物燃料电池在体外和体内环境下产生的功率密度分别为165µW/cm2和285µW/cm2,基于碳线的燃料电池在体外和体内环境下产生的功率密度分别为98µW/cm2和180µW/cm2。这项工作为在皮下植入微系统中使用廉价电极铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信