金属废物腐蚀制氢:旧/废al6063系列合金的系统研究

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Meenal Gupta, Filippo Selleri, Antonio Ficarella, Patrizia Bocchetta
{"title":"金属废物腐蚀制氢:旧/废al6063系列合金的系统研究","authors":"Meenal Gupta,&nbsp;Filippo Selleri,&nbsp;Antonio Ficarella,&nbsp;Patrizia Bocchetta","doi":"10.1007/s40243-024-00287-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, aluminum-based wastes are used as energy carriers for on-demand hydrogen production through sustainable, eco-friendly, and cost-effective controlled electrochemical corrosion in aqueous solution. The electrochemical process is very effective because it (i) uses waste metals to produce hydrogen, (ii) corroborates to circular economy, (iii) produces high purity hydrogen, (iv) is based on simple hydrolysis reaction of metals in relevant solutions, (v) electricity is not required and (iv) recovers part of the chemical Gibbs energy of the electrochemical corrosion usually entirely lost in the environment. We systematically studied the generation of hydrogen from industrial waste Dust Scrap Aluminum Alloy (DSAA) belonging to Al 6063 series for the first time. The process is investigated in a novel hand-made batch reactor with a low-cost commercial body suitable to an easy scale-up. Kinetics of DSAA hydrolysis reaction was explored by measuring the variation of aluminium ion concentration at different immersion times through Inductively Coupled Plasma (ICP) and weight loss measurements at different temperatures and NaOH catalyst concentrations. The effect of hydrolysis reaction on the composition and morphology of the metal surfaces in terms of formed oxide layers was studied in detail using Optical Polarizing Microscopy (OPM), Energy dispersive X-ray (EDX) and Scanning Electron Microscopy (SEM) techniques. The criteria used to evaluate the hydrogen reactor performance were hydrogen (i) yield and (ii) production rate. The experimental results showed that a strong increase in NaOH concentration (from 0.75 to 5 M) corresponding to a slow increase in hydrolysis reaction temperature (from 38.8 to 49.9 °C) lead to an improvement in hydrogen generation rate of one order of magnitude, i.e. from 35.71 to 421.41 ml/(g∙min). Low but constant rate of hydrogen can be generated for longer times at low NaOH concentrations (0.75 M), while fast and variable hydrogen generation rate occurs at higher concentrations (5 M) in short times. In the case study of Al 6063 series waste scrap, the hydrolysis reactor parameters can be regulated to deliver hydrogen generation rates from 35.71 to 421.41 ml/(g min) according to requirements. We expect that the results presented in this work will encourage researchers to study the possible use of other metal-based and multi-material plastic/metal wastes thermodynamically prone to electrochemical corrosion process as possible source of hydrogen.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00287-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydrogen generation through metal waste corrosion: a systematic investigation on old/post-consumer scrap Al6063-series alloy\",\"authors\":\"Meenal Gupta,&nbsp;Filippo Selleri,&nbsp;Antonio Ficarella,&nbsp;Patrizia Bocchetta\",\"doi\":\"10.1007/s40243-024-00287-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, aluminum-based wastes are used as energy carriers for on-demand hydrogen production through sustainable, eco-friendly, and cost-effective controlled electrochemical corrosion in aqueous solution. The electrochemical process is very effective because it (i) uses waste metals to produce hydrogen, (ii) corroborates to circular economy, (iii) produces high purity hydrogen, (iv) is based on simple hydrolysis reaction of metals in relevant solutions, (v) electricity is not required and (iv) recovers part of the chemical Gibbs energy of the electrochemical corrosion usually entirely lost in the environment. We systematically studied the generation of hydrogen from industrial waste Dust Scrap Aluminum Alloy (DSAA) belonging to Al 6063 series for the first time. The process is investigated in a novel hand-made batch reactor with a low-cost commercial body suitable to an easy scale-up. Kinetics of DSAA hydrolysis reaction was explored by measuring the variation of aluminium ion concentration at different immersion times through Inductively Coupled Plasma (ICP) and weight loss measurements at different temperatures and NaOH catalyst concentrations. The effect of hydrolysis reaction on the composition and morphology of the metal surfaces in terms of formed oxide layers was studied in detail using Optical Polarizing Microscopy (OPM), Energy dispersive X-ray (EDX) and Scanning Electron Microscopy (SEM) techniques. The criteria used to evaluate the hydrogen reactor performance were hydrogen (i) yield and (ii) production rate. The experimental results showed that a strong increase in NaOH concentration (from 0.75 to 5 M) corresponding to a slow increase in hydrolysis reaction temperature (from 38.8 to 49.9 °C) lead to an improvement in hydrogen generation rate of one order of magnitude, i.e. from 35.71 to 421.41 ml/(g∙min). Low but constant rate of hydrogen can be generated for longer times at low NaOH concentrations (0.75 M), while fast and variable hydrogen generation rate occurs at higher concentrations (5 M) in short times. In the case study of Al 6063 series waste scrap, the hydrolysis reactor parameters can be regulated to deliver hydrogen generation rates from 35.71 to 421.41 ml/(g min) according to requirements. We expect that the results presented in this work will encourage researchers to study the possible use of other metal-based and multi-material plastic/metal wastes thermodynamically prone to electrochemical corrosion process as possible source of hydrogen.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-024-00287-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-024-00287-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-024-00287-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,利用铝基废物作为能量载体,通过可持续、生态友好和经济有效的控制水溶液中的电化学腐蚀,实现按需制氢。电化学过程是非常有效的,因为它(i)利用废金属产生氢,(ii)证实了循环经济,(iii)产生高纯度的氢,(iv)基于金属在相关溶液中的简单水解反应,(v)不需要电力,(iv)回收部分化学吉布斯能电化学腐蚀通常完全失去在环境中。首次系统地研究了Al 6063系列工业废粉尘废铝合金(DSAA)的产氢过程。该工艺在一种新型的手工间歇式反应器中进行了研究,该反应器具有低成本的商业主体,易于扩大规模。通过电感耦合等离子体(ICP)测量不同浸泡时间下铝离子浓度的变化,以及在不同温度和NaOH催化剂浓度下的失重,探讨了DSAA水解反应的动力学。利用光学偏光显微镜(OPM)、能量色散x射线(EDX)和扫描电子显微镜(SEM)技术详细研究了水解反应对金属表面氧化层组成和形貌的影响。用于评价氢反应器性能的标准是氢(i)产率和(ii)生产率。实验结果表明,NaOH浓度的增加(从0.75到5 M)与水解反应温度的缓慢升高(从38.8℃到49.9℃)相对应,使产氢速率提高了一个数量级,即从35.71到421.41 ml/(g∙min)。在低NaOH浓度(0.75 M)下可以长时间生成低但恒定速率的氢气,而在较高浓度(5 M)下可以在短时间内快速且可变的氢气生成速率。以Al 6063系列废渣为例,水解反应器参数可根据要求调节,产氢率为35.71 ~ 421.41 ml/(g min)。我们希望这项工作的结果将鼓励研究人员研究其他金属基和多材料塑料/金属废物在热力学上容易发生电化学腐蚀过程作为氢的可能来源。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen generation through metal waste corrosion: a systematic investigation on old/post-consumer scrap Al6063-series alloy

In this study, aluminum-based wastes are used as energy carriers for on-demand hydrogen production through sustainable, eco-friendly, and cost-effective controlled electrochemical corrosion in aqueous solution. The electrochemical process is very effective because it (i) uses waste metals to produce hydrogen, (ii) corroborates to circular economy, (iii) produces high purity hydrogen, (iv) is based on simple hydrolysis reaction of metals in relevant solutions, (v) electricity is not required and (iv) recovers part of the chemical Gibbs energy of the electrochemical corrosion usually entirely lost in the environment. We systematically studied the generation of hydrogen from industrial waste Dust Scrap Aluminum Alloy (DSAA) belonging to Al 6063 series for the first time. The process is investigated in a novel hand-made batch reactor with a low-cost commercial body suitable to an easy scale-up. Kinetics of DSAA hydrolysis reaction was explored by measuring the variation of aluminium ion concentration at different immersion times through Inductively Coupled Plasma (ICP) and weight loss measurements at different temperatures and NaOH catalyst concentrations. The effect of hydrolysis reaction on the composition and morphology of the metal surfaces in terms of formed oxide layers was studied in detail using Optical Polarizing Microscopy (OPM), Energy dispersive X-ray (EDX) and Scanning Electron Microscopy (SEM) techniques. The criteria used to evaluate the hydrogen reactor performance were hydrogen (i) yield and (ii) production rate. The experimental results showed that a strong increase in NaOH concentration (from 0.75 to 5 M) corresponding to a slow increase in hydrolysis reaction temperature (from 38.8 to 49.9 °C) lead to an improvement in hydrogen generation rate of one order of magnitude, i.e. from 35.71 to 421.41 ml/(g∙min). Low but constant rate of hydrogen can be generated for longer times at low NaOH concentrations (0.75 M), while fast and variable hydrogen generation rate occurs at higher concentrations (5 M) in short times. In the case study of Al 6063 series waste scrap, the hydrolysis reactor parameters can be regulated to deliver hydrogen generation rates from 35.71 to 421.41 ml/(g min) according to requirements. We expect that the results presented in this work will encourage researchers to study the possible use of other metal-based and multi-material plastic/metal wastes thermodynamically prone to electrochemical corrosion process as possible source of hydrogen.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信