NiAl LDH、Al(OH)3和Zn(OH)2纳米粒子基泡沫镍涂层对水溶液析氢的影响

IF 5.5 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mahdi Abolghasemi Rise, Aref Besharat, Shahram Raygan
{"title":"NiAl LDH、Al(OH)3和Zn(OH)2纳米粒子基泡沫镍涂层对水溶液析氢的影响","authors":"Mahdi Abolghasemi Rise,&nbsp;Aref Besharat,&nbsp;Shahram Raygan","doi":"10.1007/s40243-025-00316-8","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Developing high-performance electrocatalysts for the large-scale hydrogen evolution reaction via electrochemical water splitting is essential. In this research, nickel-aluminum-zinc nanoparticles were deposited onto three-dimensional nickel foam (NiAlZn/NF) using a hydrothermal method. The structure and morphology of the synthesized electrocatalyst were studied using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The crystalline nature was studied using high-resolution transmission electron microscopy (HRTEM). Also, the activity of the hydrogen evolution reaction was investigated using linear scanning voltammetry (LSV) in a 1 M potassium hydroxide (KOH) electrolyte. The coated samples were compared with the bare nickel foam substrate. The results showed the potentials required to create a current density of 10 and 100 mA/cm<sup>2</sup> for the 3Ni-4Al-1Zn specimen deposited on nickel foam are 196 and 479 mV, and for the 4Ni-3Al-1Zn are 233 and 484 mV, and for the 3Ni-3Al-1Zn, are 218 and 587 mV, and for the raw nickel foam, are 251 and 624 mV, respectively. Also, the electrochemical impedance spectroscopy (EIS) showed that the value of <i>R</i><sub><i>ct</i></sub> for 3Ni4Al1Zn, 4Ni3Al1Zn, 3Ni3Al1Zn, and nickel foam is 6.4, 10.2, 18, and 22.1 Ω, respectively. Besides, 3Ni4Al1Zn/NF also shows long-term stability lasting six hours. The <i>R</i><sub><i>ct</i></sub> value for the 3Ni4Al1Zn sample is lower than the rest, which indicates a better charge transfer during the electrochemical process. The results showed that the coated specimens performed better catalytic behavior in hydrogen generation than the bare nickel foam sample.</p>\n </div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00316-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluation of NiAl LDH, Al(OH)3, and Zn(OH)2nanoparticle-based coating on nickel foam for hydrogen evolution from aqueous solution\",\"authors\":\"Mahdi Abolghasemi Rise,&nbsp;Aref Besharat,&nbsp;Shahram Raygan\",\"doi\":\"10.1007/s40243-025-00316-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Developing high-performance electrocatalysts for the large-scale hydrogen evolution reaction via electrochemical water splitting is essential. In this research, nickel-aluminum-zinc nanoparticles were deposited onto three-dimensional nickel foam (NiAlZn/NF) using a hydrothermal method. The structure and morphology of the synthesized electrocatalyst were studied using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The crystalline nature was studied using high-resolution transmission electron microscopy (HRTEM). Also, the activity of the hydrogen evolution reaction was investigated using linear scanning voltammetry (LSV) in a 1 M potassium hydroxide (KOH) electrolyte. The coated samples were compared with the bare nickel foam substrate. The results showed the potentials required to create a current density of 10 and 100 mA/cm<sup>2</sup> for the 3Ni-4Al-1Zn specimen deposited on nickel foam are 196 and 479 mV, and for the 4Ni-3Al-1Zn are 233 and 484 mV, and for the 3Ni-3Al-1Zn, are 218 and 587 mV, and for the raw nickel foam, are 251 and 624 mV, respectively. Also, the electrochemical impedance spectroscopy (EIS) showed that the value of <i>R</i><sub><i>ct</i></sub> for 3Ni4Al1Zn, 4Ni3Al1Zn, 3Ni3Al1Zn, and nickel foam is 6.4, 10.2, 18, and 22.1 Ω, respectively. Besides, 3Ni4Al1Zn/NF also shows long-term stability lasting six hours. The <i>R</i><sub><i>ct</i></sub> value for the 3Ni4Al1Zn sample is lower than the rest, which indicates a better charge transfer during the electrochemical process. The results showed that the coated specimens performed better catalytic behavior in hydrogen generation than the bare nickel foam sample.</p>\\n </div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-025-00316-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-025-00316-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00316-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高性能电催化剂用于电化学水分解大规模析氢反应是十分必要的。在本研究中,采用水热法将镍铝锌纳米颗粒沉积在三维泡沫镍(NiAlZn/NF)上。采用x射线衍射(XRD)、x射线光电子能谱(XPS)和扫描电子显微镜(SEM)对合成的电催化剂的结构和形貌进行了研究。利用高分辨率透射电镜(HRTEM)研究了晶体性质。用线性扫描伏安法(LSV)研究了在1 M氢氧化钾(KOH)电解液中析氢反应的活性。将涂层样品与裸泡沫镍衬底进行了比较。结果表明,泡沫镍上沉积的3Ni-4Al-1Zn样品产生10和100 mA/cm2电流密度所需的电位分别为196和479 mV, 4Ni-3Al-1Zn为233和484 mV, 3Ni-3Al-1Zn为218和587 mV,泡沫镍原料为251和624 mV。电化学阻抗谱(EIS)显示,3Ni4Al1Zn、4Ni3Al1Zn、3Ni3Al1Zn和泡沫镍的Rct值分别为6.4、10.2、18和22.1 Ω。此外,3Ni4Al1Zn/NF也表现出持续6小时的长期稳定性。3Ni4Al1Zn样品的Rct值小于其他样品,表明在电化学过程中电荷转移更好。结果表明,包覆后的泡沫镍比裸泡沫镍具有更好的产氢催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of NiAl LDH, Al(OH)3, and Zn(OH)2nanoparticle-based coating on nickel foam for hydrogen evolution from aqueous solution

Developing high-performance electrocatalysts for the large-scale hydrogen evolution reaction via electrochemical water splitting is essential. In this research, nickel-aluminum-zinc nanoparticles were deposited onto three-dimensional nickel foam (NiAlZn/NF) using a hydrothermal method. The structure and morphology of the synthesized electrocatalyst were studied using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The crystalline nature was studied using high-resolution transmission electron microscopy (HRTEM). Also, the activity of the hydrogen evolution reaction was investigated using linear scanning voltammetry (LSV) in a 1 M potassium hydroxide (KOH) electrolyte. The coated samples were compared with the bare nickel foam substrate. The results showed the potentials required to create a current density of 10 and 100 mA/cm2 for the 3Ni-4Al-1Zn specimen deposited on nickel foam are 196 and 479 mV, and for the 4Ni-3Al-1Zn are 233 and 484 mV, and for the 3Ni-3Al-1Zn, are 218 and 587 mV, and for the raw nickel foam, are 251 and 624 mV, respectively. Also, the electrochemical impedance spectroscopy (EIS) showed that the value of Rct for 3Ni4Al1Zn, 4Ni3Al1Zn, 3Ni3Al1Zn, and nickel foam is 6.4, 10.2, 18, and 22.1 Ω, respectively. Besides, 3Ni4Al1Zn/NF also shows long-term stability lasting six hours. The Rct value for the 3Ni4Al1Zn sample is lower than the rest, which indicates a better charge transfer during the electrochemical process. The results showed that the coated specimens performed better catalytic behavior in hydrogen generation than the bare nickel foam sample.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信