微观洞察有机钙钛矿材料和器件的结构和功能特性

IF 5.5 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Smruti Medha Mishra, Bhabani Swain, Abduk Kareem K. Soopy, Naga Venkateswar Rao Nulakani, Shanavas Shajahan, Inas Taha, Yarjan Abdul Samad, Adel Najar, Dalaver H. Anjum
{"title":"微观洞察有机钙钛矿材料和器件的结构和功能特性","authors":"Smruti Medha Mishra,&nbsp;Bhabani Swain,&nbsp;Abduk Kareem K. Soopy,&nbsp;Naga Venkateswar Rao Nulakani,&nbsp;Shanavas Shajahan,&nbsp;Inas Taha,&nbsp;Yarjan Abdul Samad,&nbsp;Adel Najar,&nbsp;Dalaver H. Anjum","doi":"10.1007/s40243-025-00318-6","DOIUrl":null,"url":null,"abstract":"<div><p>Perovskite materials have emerged as a focal point of research due to their exceptional optoelectronic properties and promising applications in photovoltaics, light-emitting diodes, and photodetectors. A thorough microscopic understanding of these materials is crucial for elucidating their intrinsic properties, defect dynamics, and interface behaviors. This paper offers a comprehensive review of advanced microscopic techniques utilized to investigate perovskite materials and devices, with a focus on their structural, morphological, and performance characteristics. The effects of synthesis conditions and electron beam-induced damage in TEM are specifically examined since they may change the actual nature of perovskite materials by causing structural deterioration, phase changes, and defect development. This paper highlights the advantages and limitations of these techniques, offering insights into optimizing imaging conditions to enhance the study of perovskites. Ultimately, improving synthesis methods, defect engineering, and imaging strategies is key to advancing perovskite-based optoelectronic devices.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00318-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Microscopic insights into the structural and functional properties of organic perovskite materials and devices\",\"authors\":\"Smruti Medha Mishra,&nbsp;Bhabani Swain,&nbsp;Abduk Kareem K. Soopy,&nbsp;Naga Venkateswar Rao Nulakani,&nbsp;Shanavas Shajahan,&nbsp;Inas Taha,&nbsp;Yarjan Abdul Samad,&nbsp;Adel Najar,&nbsp;Dalaver H. Anjum\",\"doi\":\"10.1007/s40243-025-00318-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Perovskite materials have emerged as a focal point of research due to their exceptional optoelectronic properties and promising applications in photovoltaics, light-emitting diodes, and photodetectors. A thorough microscopic understanding of these materials is crucial for elucidating their intrinsic properties, defect dynamics, and interface behaviors. This paper offers a comprehensive review of advanced microscopic techniques utilized to investigate perovskite materials and devices, with a focus on their structural, morphological, and performance characteristics. The effects of synthesis conditions and electron beam-induced damage in TEM are specifically examined since they may change the actual nature of perovskite materials by causing structural deterioration, phase changes, and defect development. This paper highlights the advantages and limitations of these techniques, offering insights into optimizing imaging conditions to enhance the study of perovskites. Ultimately, improving synthesis methods, defect engineering, and imaging strategies is key to advancing perovskite-based optoelectronic devices.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-025-00318-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-025-00318-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00318-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿材料由于其优异的光电性能和在光伏、发光二极管和光电探测器中的应用前景而成为研究的焦点。对这些材料进行彻底的微观理解对于阐明它们的内在性质、缺陷动力学和界面行为至关重要。本文全面回顾了用于研究钙钛矿材料和器件的先进显微技术,重点介绍了它们的结构、形态和性能特征。由于合成条件和电子束诱导损伤可能通过导致结构恶化、相变和缺陷发展而改变钙钛矿材料的实际性质,因此对TEM的影响进行了专门研究。本文强调了这些技术的优点和局限性,为优化成像条件以加强钙钛矿的研究提供了见解。最终,改进合成方法、缺陷工程和成像策略是推进钙钛矿基光电器件的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microscopic insights into the structural and functional properties of organic perovskite materials and devices

Perovskite materials have emerged as a focal point of research due to their exceptional optoelectronic properties and promising applications in photovoltaics, light-emitting diodes, and photodetectors. A thorough microscopic understanding of these materials is crucial for elucidating their intrinsic properties, defect dynamics, and interface behaviors. This paper offers a comprehensive review of advanced microscopic techniques utilized to investigate perovskite materials and devices, with a focus on their structural, morphological, and performance characteristics. The effects of synthesis conditions and electron beam-induced damage in TEM are specifically examined since they may change the actual nature of perovskite materials by causing structural deterioration, phase changes, and defect development. This paper highlights the advantages and limitations of these techniques, offering insights into optimizing imaging conditions to enhance the study of perovskites. Ultimately, improving synthesis methods, defect engineering, and imaging strategies is key to advancing perovskite-based optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信