Improved photovoltaic performance of dye-sensitized solar cell upon doping with pulsed-laser fabricated plasmonic silver nanoparticles as modified photoanodes
Abdul Subhan, Karthigaimuthu Dharmalingam, Abdel-Hamid Ismail Mourad, Saleh T. Mahmoud, Hussain Alawadhi
{"title":"Improved photovoltaic performance of dye-sensitized solar cell upon doping with pulsed-laser fabricated plasmonic silver nanoparticles as modified photoanodes","authors":"Abdul Subhan, Karthigaimuthu Dharmalingam, Abdel-Hamid Ismail Mourad, Saleh T. Mahmoud, Hussain Alawadhi","doi":"10.1007/s40243-025-00315-9","DOIUrl":null,"url":null,"abstract":"<div><p>The use of plasmonic nanomaterials as performance enhancers in dye-sensitized solar cells (DSSCs) has recently gained significant attention, with photonic excitation of metal nanoparticles resulting in improved light entrapment and near-field excitation. However, there are limited studies on using pulsed laser-synthesized colloidal silver nanoparticles as modified photoanodes within the DSSC architecture. In this study, colloids of silver nanoparticles (Ag NPs) with varying concentrations are produced using the advanced nanosecond pulsed laser ablation in liquid technique and subsequently implanted into the TiO<sub>2</sub> photoanode of the N719 DSSC, forming an Ag@TiO<sub>2</sub> nanostructure. The optical properties, investigated through UV-visible spectroscopy, reveal a concentration-dependent absorbance of colloidal Ag NPs based on the duration of laser exposure. Using a second harmonic wavelength of 532 nm leads to the formation of spherical and quasi-spherical nanoparticles with a size range of 20–180 nm. The photovoltaic performance of a solution-processed DSSC with the Ag@TiO<sub>2</sub> modified photoanode at varying concentrations of Ag NPs is studied, with an optimal concentration of 13 µg/ml and doping (wt%) of 2.0%, resulting in almost a two-fold increase in photocurrent density (<i>J</i><sub><i>sc</i></sub>) of 13.56 mA/cm<sup>2</sup>, and maximum power output <i>(P</i><sub><i>max</i></sub><i>)</i> of 1.125 mW, with the highest power conversion efficiency (PCE) of 4.50% when compared with standard DSSC. The DSSC characterizations, including transient photocurrent response, showed higher current density for Ag-doped photoanodes compared with bare TiO<sub>2,</sub> and the electrochemical impedance of the modified DSSC showed the lowest transfer resistance (R<sub>c-t</sub>) of 3.6 Ω. Finally, the developed plasmonic DSSC highlights the effect of enhanced light absorption through localized surface plasmon resonance (LSPR) and enhanced charge transfer within the absorber layer, resulting in improved solar cell performance.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00315-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00315-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of plasmonic nanomaterials as performance enhancers in dye-sensitized solar cells (DSSCs) has recently gained significant attention, with photonic excitation of metal nanoparticles resulting in improved light entrapment and near-field excitation. However, there are limited studies on using pulsed laser-synthesized colloidal silver nanoparticles as modified photoanodes within the DSSC architecture. In this study, colloids of silver nanoparticles (Ag NPs) with varying concentrations are produced using the advanced nanosecond pulsed laser ablation in liquid technique and subsequently implanted into the TiO2 photoanode of the N719 DSSC, forming an Ag@TiO2 nanostructure. The optical properties, investigated through UV-visible spectroscopy, reveal a concentration-dependent absorbance of colloidal Ag NPs based on the duration of laser exposure. Using a second harmonic wavelength of 532 nm leads to the formation of spherical and quasi-spherical nanoparticles with a size range of 20–180 nm. The photovoltaic performance of a solution-processed DSSC with the Ag@TiO2 modified photoanode at varying concentrations of Ag NPs is studied, with an optimal concentration of 13 µg/ml and doping (wt%) of 2.0%, resulting in almost a two-fold increase in photocurrent density (Jsc) of 13.56 mA/cm2, and maximum power output (Pmax) of 1.125 mW, with the highest power conversion efficiency (PCE) of 4.50% when compared with standard DSSC. The DSSC characterizations, including transient photocurrent response, showed higher current density for Ag-doped photoanodes compared with bare TiO2, and the electrochemical impedance of the modified DSSC showed the lowest transfer resistance (Rc-t) of 3.6 Ω. Finally, the developed plasmonic DSSC highlights the effect of enhanced light absorption through localized surface plasmon resonance (LSPR) and enhanced charge transfer within the absorber layer, resulting in improved solar cell performance.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies