Raziyeh Akbari, Marta Mastrosimone, Mohsin Muhyuddin, Tommaso Caielli, Piercarlo Mustarelli, Carlo Santoro, Carlo Antonini
{"title":"阴离子交换膜水电解槽阴极微孔层的润湿","authors":"Raziyeh Akbari, Marta Mastrosimone, Mohsin Muhyuddin, Tommaso Caielli, Piercarlo Mustarelli, Carlo Santoro, Carlo Antonini","doi":"10.1007/s40243-025-00324-8","DOIUrl":null,"url":null,"abstract":"<div><p>Water management is crucial for the performance of anion exchange membrane water electrolyzers (AEM-WEs), to maintain membrane hydration and enable phase separation between hydrogen gas and liquid water. Therefore, careful material selection for the anode and cathode is essential to enhance reactant/product transport and optimize water management under ‘dry cathode’ conditions. This study investigates the wetting characteristics of two commercially available porous transport layers (PTLs) used in AEM-WE: carbon paper and carbon paper with a microporous layer (MPL). Wettability was measured under static, quasi-static, and dynamic conditions to assess the effect of water and electrolytes (NaOH, KOH, K<sub>2</sub>CO<sub>3</sub>) across concentrations (up to 1 M) and operational temperatures (20 °C to 92 °C). Carbon paper exhibits mild hydrophobicity (advancing contact angles of <span>\\(\\:\\sim\\)</span>120°, however with receding contact angle <span>\\(\\:\\sim\\)</span>0°), whereas carbon paper with MPL demonstrates superhydrophobicity (advancing and receding contact angles >145° and low contact angle hysteresis), maintaining a stable Cassie-Baxter wetting state. Dynamic wetting experiments confirmed the robustness of the superhydrophobicity in carbon paper with MPL, facilitating phase separation between hydrogen gas and liquid water. The presence of supporting electrolytes did not significantly affect wettability, and the materials retained hydrophobic properties across different temperatures. These findings highlight the importance of MPLs in optimizing water transport and gas rejection within AEM-WEs, ensuring efficient and stable operation under “dry cathode” conditions. These PTLs (with and without the addition of the MPL) were integrated into AEM-WE and polarization curves were run. Preliminary data, in a specific condition, suggested the presence of the MPL within the PTL enhance AEM-WE performance.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00324-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Wetting of the microporous layer at the cathode of an anion exchange membrane water electrolyzer\",\"authors\":\"Raziyeh Akbari, Marta Mastrosimone, Mohsin Muhyuddin, Tommaso Caielli, Piercarlo Mustarelli, Carlo Santoro, Carlo Antonini\",\"doi\":\"10.1007/s40243-025-00324-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water management is crucial for the performance of anion exchange membrane water electrolyzers (AEM-WEs), to maintain membrane hydration and enable phase separation between hydrogen gas and liquid water. Therefore, careful material selection for the anode and cathode is essential to enhance reactant/product transport and optimize water management under ‘dry cathode’ conditions. This study investigates the wetting characteristics of two commercially available porous transport layers (PTLs) used in AEM-WE: carbon paper and carbon paper with a microporous layer (MPL). Wettability was measured under static, quasi-static, and dynamic conditions to assess the effect of water and electrolytes (NaOH, KOH, K<sub>2</sub>CO<sub>3</sub>) across concentrations (up to 1 M) and operational temperatures (20 °C to 92 °C). Carbon paper exhibits mild hydrophobicity (advancing contact angles of <span>\\\\(\\\\:\\\\sim\\\\)</span>120°, however with receding contact angle <span>\\\\(\\\\:\\\\sim\\\\)</span>0°), whereas carbon paper with MPL demonstrates superhydrophobicity (advancing and receding contact angles >145° and low contact angle hysteresis), maintaining a stable Cassie-Baxter wetting state. Dynamic wetting experiments confirmed the robustness of the superhydrophobicity in carbon paper with MPL, facilitating phase separation between hydrogen gas and liquid water. The presence of supporting electrolytes did not significantly affect wettability, and the materials retained hydrophobic properties across different temperatures. These findings highlight the importance of MPLs in optimizing water transport and gas rejection within AEM-WEs, ensuring efficient and stable operation under “dry cathode” conditions. These PTLs (with and without the addition of the MPL) were integrated into AEM-WE and polarization curves were run. Preliminary data, in a specific condition, suggested the presence of the MPL within the PTL enhance AEM-WE performance.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-025-00324-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-025-00324-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00324-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Wetting of the microporous layer at the cathode of an anion exchange membrane water electrolyzer
Water management is crucial for the performance of anion exchange membrane water electrolyzers (AEM-WEs), to maintain membrane hydration and enable phase separation between hydrogen gas and liquid water. Therefore, careful material selection for the anode and cathode is essential to enhance reactant/product transport and optimize water management under ‘dry cathode’ conditions. This study investigates the wetting characteristics of two commercially available porous transport layers (PTLs) used in AEM-WE: carbon paper and carbon paper with a microporous layer (MPL). Wettability was measured under static, quasi-static, and dynamic conditions to assess the effect of water and electrolytes (NaOH, KOH, K2CO3) across concentrations (up to 1 M) and operational temperatures (20 °C to 92 °C). Carbon paper exhibits mild hydrophobicity (advancing contact angles of \(\:\sim\)120°, however with receding contact angle \(\:\sim\)0°), whereas carbon paper with MPL demonstrates superhydrophobicity (advancing and receding contact angles >145° and low contact angle hysteresis), maintaining a stable Cassie-Baxter wetting state. Dynamic wetting experiments confirmed the robustness of the superhydrophobicity in carbon paper with MPL, facilitating phase separation between hydrogen gas and liquid water. The presence of supporting electrolytes did not significantly affect wettability, and the materials retained hydrophobic properties across different temperatures. These findings highlight the importance of MPLs in optimizing water transport and gas rejection within AEM-WEs, ensuring efficient and stable operation under “dry cathode” conditions. These PTLs (with and without the addition of the MPL) were integrated into AEM-WE and polarization curves were run. Preliminary data, in a specific condition, suggested the presence of the MPL within the PTL enhance AEM-WE performance.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies