Enhanced electrochemical performance and thermomechanical stability of nafion/sulfonated clay-carbon nanotube nanocomposite membranes for high-performance fuel cells under challenging conditions

IF 5.5 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Isabella Nicotera, Muhammad Habib Ur Rehman, Valeria Loise, Martina De Bonis, Coppola Luigi, Cataldo Simari
{"title":"Enhanced electrochemical performance and thermomechanical stability of nafion/sulfonated clay-carbon nanotube nanocomposite membranes for high-performance fuel cells under challenging conditions","authors":"Isabella Nicotera,&nbsp;Muhammad Habib Ur Rehman,&nbsp;Valeria Loise,&nbsp;Martina De Bonis,&nbsp;Coppola Luigi,&nbsp;Cataldo Simari","doi":"10.1007/s40243-025-00325-7","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The development of high-performance proton exchange membranes (PEMs) is crucial for advancing fuel cell technology, particularly under demanding operating conditions. This study investigates novel nanocomposite membranes based on Nafion reinforced with sulfonated clay-carbon nanotubes (sCC) as a hybrid filler. The incorporation of sCC not only improved the ion exchange capacity and hydrolytic stability but also critically modulated water dynamics, leading to superior water retention and sustained proton diffusion, particularly at elevated temperatures. The nanocomposite membranes exhibited substantially higher proton conductivity, especially under low relative humidity conditions, a critical factor for high-temperature fuel cell operation. Electrochemical evaluation in a H<sub>2</sub>/O<sub>2</sub> direct hydrogen fuel cell (DHFC) showed an almost fourfold increase in peak power density (443.2 mW cm⁻²) under challenging high-temperature, low-humidity conditions (120 °C, 20% RH) for N-sCC-L3 compared to recast Nafion (117.3 mW cm⁻²).</p>\n </div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 3","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00325-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00325-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-performance proton exchange membranes (PEMs) is crucial for advancing fuel cell technology, particularly under demanding operating conditions. This study investigates novel nanocomposite membranes based on Nafion reinforced with sulfonated clay-carbon nanotubes (sCC) as a hybrid filler. The incorporation of sCC not only improved the ion exchange capacity and hydrolytic stability but also critically modulated water dynamics, leading to superior water retention and sustained proton diffusion, particularly at elevated temperatures. The nanocomposite membranes exhibited substantially higher proton conductivity, especially under low relative humidity conditions, a critical factor for high-temperature fuel cell operation. Electrochemical evaluation in a H2/O2 direct hydrogen fuel cell (DHFC) showed an almost fourfold increase in peak power density (443.2 mW cm⁻²) under challenging high-temperature, low-humidity conditions (120 °C, 20% RH) for N-sCC-L3 compared to recast Nafion (117.3 mW cm⁻²).

纳米/磺化粘土-碳纳米管纳米复合膜在高性能燃料电池中的电化学性能和热机械稳定性
高性能质子交换膜(PEMs)的开发对于推进燃料电池技术的发展至关重要,特别是在苛刻的操作条件下。本文研究了以磺化粘土-碳纳米管(sCC)为杂化填料,以Nafion为增强材料的新型纳米复合膜。sCC的掺入不仅提高了离子交换能力和水解稳定性,而且还严格调节了水动力学,导致了更好的水潴留和持续的质子扩散,特别是在高温下。纳米复合膜表现出更高的质子导电性,特别是在低相对湿度条件下,这是高温燃料电池运行的关键因素。H2/O2直接氢燃料电池(DHFC)的电化学评估显示,在具有挑战性的高温,低湿条件下(120°C, 20% RH), N-sCC-L3的峰值功率密度(443.2 mW cm -⁻²)比重铸的Nafion (117.3 mW cm -⁻²)几乎增加了四倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信