IEEE Journal on Exploratory Solid-State Computational Devices and Circuits最新文献

筛选
英文 中文
Special Topic on Nontraditional Devices, Circuits, and Architectures for Energy-Efficient Computing 节能计算的非传统器件、电路和体系结构专题
IF 2.4
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2023-06-26 DOI: 10.1109/JXCDC.2023.3280846
Sourav Dutta;Punyashloka Debashis;Amir Khosrowshahi
{"title":"Special Topic on Nontraditional Devices, Circuits, and Architectures for Energy-Efficient Computing","authors":"Sourav Dutta;Punyashloka Debashis;Amir Khosrowshahi","doi":"10.1109/JXCDC.2023.3280846","DOIUrl":"10.1109/JXCDC.2023.3280846","url":null,"abstract":"Recently, novel applications in the space of artificial intelligence (AI) such as solving constraint optimization problems, probabilistic inferencing, contextual adaptation, and continual learning from noisy data are gaining momentum to address relevant real-world problems. A majority of these tasks are compute and/or memory intensive. While traditional deep learning has been fueled by the utilization of graphic processing units (GPUs) to accelerate algorithms primarily in the cloud, today we see a surge in the development of application/domain-specific integrated circuits and systems that aim at providing an order of magnitude improvement over traditional GPU-based approaches in terms of energy efficiency and latency. This growing branch of research taps into the realms of neuronal dynamics, collective computing using dynamical systems, harnessing stochasticity to enable probabilistic computing, and even draws inspiration from quantum computing. We envision such specialized application/domain-specific systems to perform complex tasks such as solving NP-hard optimization problems, performing reasoning and cognition in the presence of uncertainty with superior energy-efficiency (and/or area and latency improvements) compared to conventional GPU-based approaches and von Neumann computing using traditional silicon-based devices, circuits, and architectures. Of special interest is to utilize such nontraditional computing approaches to reduce the time to obtain solutions for computationally challenging problems that otherwise tend to grow exponentially with problem size. To support this vision, there needs to be fundamental advances in both nontraditional devices and circuits/architectures. Recent works have shown that novel circuit topologies and architectures involving non-Boolean, oscillatory, spiking, probabilistic, or quantum-inspired computing are more suited toward tackling applications such as solving constraint optimization problems, performing energy-based learning, performing Bayesian learning and inference, lifelong continual learning, and solving quantum-inspired applications such as Quantum Monte Carlo. A flurry of current research highlights that compared to traditional silicon-based devices, emerging nanodevices utilizing novel quantum materials such as complex oxides, ferroelectric materials, and spintronic materials can allow the realization of these novel circuits and architectures with lower foot-print area, higher energy efficiency, and lower latency.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 1","pages":"iii-v"},"PeriodicalIF":2.4,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10163725.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48736919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits publication information 探索性固态计算器件和电路IEEE杂志出版信息
IF 2.4
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2023-06-01 DOI: 10.1109/JXCDC.2023.3277777
{"title":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits publication information","authors":"","doi":"10.1109/JXCDC.2023.3277777","DOIUrl":"10.1109/JXCDC.2023.3277777","url":null,"abstract":"","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 1","pages":"C2-C2"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10171850.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47878758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nontraditional Design of Dynamic Logics Using FDSOI for Ultra-Efficient Computing 利用FDSOI实现超高效计算的非传统动态逻辑设计
IF 2.4
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2023-04-21 DOI: 10.1109/JXCDC.2023.3269141
Shubham Kumar;Swetaki Chatterjee;Chetan Kumar Dabhi;Yogesh Singh Chauhan;Hussam Amrouch
{"title":"Nontraditional Design of Dynamic Logics Using FDSOI for Ultra-Efficient Computing","authors":"Shubham Kumar;Swetaki Chatterjee;Chetan Kumar Dabhi;Yogesh Singh Chauhan;Hussam Amrouch","doi":"10.1109/JXCDC.2023.3269141","DOIUrl":"10.1109/JXCDC.2023.3269141","url":null,"abstract":"In this article, we propose a nontraditional design of dynamic logic circuits using fully-depleted silicon-on-insulator (FDSOI) FETs. FDSOI FET allows the threshold voltage (\u0000<inline-formula> <tex-math>$V_{text {t}}$ </tex-math></inline-formula>\u0000) to be adjustable (i.e., low-\u0000<inline-formula> <tex-math>$V_{text {t}}$ </tex-math></inline-formula>\u0000 and high-\u0000<inline-formula> <tex-math>$V_{text {t}}$ </tex-math></inline-formula>\u0000 states) by using the back gate (BG) bias. Our design utilizes the front gate (FG) and BG of an FDSOI FET as the input terminals and proposes the dynamic logic gates (like NAND, NOR, AND, OR, XOR, and XNOR) and circuits (like a half-adder and full-adder). It requires fewer transistors to build dynamic logic gates and achieves high performance with low power dissipation compared to conventional dynamic logic designs. The compact industrial model of FDSOI FET (BSIM-IMG) has been used to simulate dynamic logic gates and is fully calibrated to reproduce the 14 nm FDSOI FET technology node data. Calibration is performed for both electrical characteristics and process variations. The simulation results show an average improvement in transistor count, propagation delay, power, and power-delay product (PDP) of 23.43%, 57.16%, 47.05%, and 77.29%, respectively, compared to the conventional designs. Further, our design reduces the charge-sharing effect, which affects the drivability of the dynamic logic gates. In addition, we have analyzed the impact of the process, supply voltage, and load capacitance variations on the propagation delay of the dynamic logic family in detail. The results show that these variations have a minor impact on the propagation delay of the proposed FDSOI-based dynamic logic gates compared to the conventional dynamic logic gates.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 1","pages":"74-82"},"PeriodicalIF":2.4,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10106142.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43854132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parallel Matrix Multiplication Using Voltage-Controlled Magnetic Anisotropy Domain Wall Logic 利用压控磁各向异性畴壁逻辑的并行矩阵乘法
IF 2.4
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2023-04-20 DOI: 10.1109/JXCDC.2023.3266441
Nicholas Zogbi;Samuel Liu;Christopher H. Bennett;Sapan Agarwal;Matthew J. Marinella;Jean Anne C. Incorvia;T. Patrick Xiao
{"title":"Parallel Matrix Multiplication Using Voltage-Controlled Magnetic Anisotropy Domain Wall Logic","authors":"Nicholas Zogbi;Samuel Liu;Christopher H. Bennett;Sapan Agarwal;Matthew J. Marinella;Jean Anne C. Incorvia;T. Patrick Xiao","doi":"10.1109/JXCDC.2023.3266441","DOIUrl":"10.1109/JXCDC.2023.3266441","url":null,"abstract":"The domain wall-magnetic tunnel junction (DW-MTJ) is a versatile device that can simultaneously store data and perform computations. These three-terminal devices are promising for digital logic due to their nonvolatility, low-energy operation, and radiation hardness. Here, we augment the DW-MTJ logic gate with voltage-controlled magnetic anisotropy (VCMA) to improve the reliability of logical concatenation in the presence of realistic process variations. VCMA creates potential wells that allow for reliable and repeatable localization of domain walls (DWs). The DW-MTJ logic gate supports different fanouts, allowing for multiple inputs and outputs for a single device without affecting the area. We simulate a systolic array of DW-MTJ multiply-accumulate (MAC) units with 4-bit and 8-bit precision, which uses the nonvolatility of DW-MTJ logic gates to enable fine-grained pipelining and high parallelism. The DW-MTJ systolic array provides comparable throughput and efficiency to state-of-the-art CMOS systolic arrays while being radiation-hard. These results improve the feasibility of using DW-based processors, especially for extreme-environment applications such as space.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 1","pages":"65-73"},"PeriodicalIF":2.4,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10106129.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43778223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Stochastic Computing Scheme of Embedding Random Bit Generation and Processing in Computational Random Access Memory (SC-CRAM) 一种在计算随机存取存储器(SC-CRAM)中嵌入随机位生成和处理的随机计算方案
IF 2.4
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2023-04-11 DOI: 10.1109/JXCDC.2023.3266136
Brandon R. Zink;Yang Lv;Masoud Zabihi;Husrev Cilasun;Sachin S. Sapatnekar;Ulya R. Karpuzcu;Marc D. Riedel;Jian-Ping Wang
{"title":"A Stochastic Computing Scheme of Embedding Random Bit Generation and Processing in Computational Random Access Memory (SC-CRAM)","authors":"Brandon R. Zink;Yang Lv;Masoud Zabihi;Husrev Cilasun;Sachin S. Sapatnekar;Ulya R. Karpuzcu;Marc D. Riedel;Jian-Ping Wang","doi":"10.1109/JXCDC.2023.3266136","DOIUrl":"10.1109/JXCDC.2023.3266136","url":null,"abstract":"Stochastic computing (SC) has emerged as a promising solution for performing complex functions on large amounts of data to meet future computing demands. However, the hardware needed to generate random bit-streams using conventional CMOS-based technologies drastically increases the area and delay cost. Area costs can be reduced using spintronics-based random number generators (RNGs), and however, this will not alleviate the delay costs since stochastic bit generation is still performed separately from the computation. In this article, we present an SC method of embedding stochastic bit generation and processing in a computational random access memory (CRAM) array, which we refer to as SC-CRAM. We demonstrate that SC-CRAM is a resilient and low-cost method for image processing, Bayesian inference systems, and Bayesian belief networks.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 1","pages":"29-37"},"PeriodicalIF":2.4,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10099030.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43855515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Generalized Block-Matrix Circuit for Closed-Loop Analog In-Memory Computing 一种用于闭环模拟内存计算的广义分阵电路
IF 2.4
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2023-04-10 DOI: 10.1109/JXCDC.2023.3265803
Piergiulio Mannocci;Daniele Ielmini
{"title":"A Generalized Block-Matrix Circuit for Closed-Loop Analog In-Memory Computing","authors":"Piergiulio Mannocci;Daniele Ielmini","doi":"10.1109/JXCDC.2023.3265803","DOIUrl":"10.1109/JXCDC.2023.3265803","url":null,"abstract":"Matrix-based computing is ubiquitous in an increasing number of present-day machine learning applications such as neural networks, regression, and 5G communications. Conventional systems based on von-Neumann architecture are limited by the energy and latency bottleneck induced by the physical separation of the processing and memory units. In-memory computing (IMC) is a novel paradigm where computation is performed directly within the memory, thus eliminating the need for constant data transfer. IMC has shown exceptional throughput and energy efficiency when coupled with crosspoint arrays of resistive memory devices in open-loop matrix-vector-multiplication and closed-loop inverse-matrix-vector multiplication (IMVM) accelerators. However, each application results in a different circuit topology, thus complicating the development of reconfigurable, general-purpose IMC systems. In this article, we present a generalized closed-loop IMVM circuit capable of performing any linear matrix operation by proper memory remapping. We derive closed-form equations for the ideal input-output transfer functions, static error, and dynamic behavior, introducing a novel continuous-time analytical model allowing for orders-of-magnitude simulation speedup with respect to SPICE-based solvers. The proposed circuit represents an ideal candidate for general-purpose accelerators of machine learning.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 1","pages":"47-55"},"PeriodicalIF":2.4,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10097860.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45573365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Nonvolatile Compute-in-Memory Macro Using Voltage-Controlled MRAM and In Situ Magnetic-to-Digital Converter 使用压控MRAM和原位磁-数转换器的非易失性内存宏
IF 2.4
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2023-03-17 DOI: 10.1109/JXCDC.2023.3258431
Vinod Kurian Jacob;Jiyue Yang;Haoran He;Puneet Gupta;Kang L Wang;Sudhakar Pamarti
{"title":"A Nonvolatile Compute-in-Memory Macro Using Voltage-Controlled MRAM and In Situ Magnetic-to-Digital Converter","authors":"Vinod Kurian Jacob;Jiyue Yang;Haoran He;Puneet Gupta;Kang L Wang;Sudhakar Pamarti","doi":"10.1109/JXCDC.2023.3258431","DOIUrl":"10.1109/JXCDC.2023.3258431","url":null,"abstract":"Compute-in-memory (CIM) accelerator has become a popular solution to achieve high energy efficiency for deep learning applications in edge devices. Recent works have demonstrated CIM macros using nonvolatile memories [spin transfer torque (STT)-MRAM and resistive random access memory (RRAM)] to take advantages of their nonvolatility and high density. However, effective computation dynamic range is far lower than their static random access memory (SRAM)-CIM counterparts due to low device ON/ OFF ratio. In this work, we combine a nonvolatile memory based on a voltage-controlled magnetic tunneling junction (VC-MTJ) device, called voltage-controlled MRAM or VC-MRAM, and accurate switched-capacitor-based CIM using a novel in situ magnetic-to-digital converter (MDC). The VC-MTJ device has demonstrated \u0000<inline-formula> <tex-math>$10times $ </tex-math></inline-formula>\u0000 lower write energy and switching time compared to STT-MRAM device and has comparable density, read energy, and read latency. The in situ MDCs embedded inside each VC-MRAM row convert magnetically stored weight information to CMOS logic levels and enable switched-capacitor-based multiply–accumulate (MAC) operation with accuracy comparable to the state-of-the-art SRAM-CIM. This article describes the schematic and layout level design of a VC-MRAM CIM macro in 28 nm. This is the first nonvolatile CIM design to enable analog MAC computation with 256 parallel rows turned ON simultaneously without degradation in dynamic range (< 1 LSB). Detailed circuit simulations including experimentally validated VC-MTJ compact models show \u0000<inline-formula> <tex-math>$1.5times $ </tex-math></inline-formula>\u0000 higher energy efficiency and \u0000<inline-formula> <tex-math>$2times $ </tex-math></inline-formula>\u0000 higher density compared to the state-of-the-art SRAM-based CIM.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 1","pages":"56-64"},"PeriodicalIF":2.4,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10075423.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41359420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing 基于内禀阻抗增强和adc内计算的高并行rram内存宏
IF 2.4
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2023-03-14 DOI: 10.1109/JXCDC.2023.3255788
Tian Xie;Shimeng Yu;Shaolan Li
{"title":"A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing","authors":"Tian Xie;Shimeng Yu;Shaolan Li","doi":"10.1109/JXCDC.2023.3255788","DOIUrl":"10.1109/JXCDC.2023.3255788","url":null,"abstract":"Resistive random access memory (RRAM) is considered to be a promising compute-in-memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics as common-gate current buffers. So the cell current can be minimized and the output impedance is boosted. The idea of In-ADC Computing (IAC) is also proposed to further decrease the complexity of the peripheral circuits. Benefiting from the proposed ideas, a pretrained VGG-8 network based on the CIFAR-10 dataset can be implemented, and an accuracy of 87.2% is achieved with 8.9 TOPS/W energy efficiency (for 8-bit multiply-and-accumulate (MAC) operation), demonstrating that the proposed techniques enable low-distortion partial sum results while still being able to operate in a power-efficient way.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 1","pages":"38-46"},"PeriodicalIF":2.4,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10070378.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46523822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Full-Stack View of Probabilistic Computing With p-Bits: Devices, Architectures, and Algorithms 概率计算的全栈视图与p位:设备,架构和算法
IF 2.4
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2023-03-14 DOI: 10.1109/JXCDC.2023.3256981
Shuvro Chowdhury;Andrea Grimaldi;Navid Anjum Aadit;Shaila Niazi;Masoud Mohseni;Shun Kanai;Hideo Ohno;Shunsuke Fukami;Luke Theogarajan;Giovanni Finocchio;Supriyo Datta;Kerem Y. Camsari
{"title":"A Full-Stack View of Probabilistic Computing With p-Bits: Devices, Architectures, and Algorithms","authors":"Shuvro Chowdhury;Andrea Grimaldi;Navid Anjum Aadit;Shaila Niazi;Masoud Mohseni;Shun Kanai;Hideo Ohno;Shunsuke Fukami;Luke Theogarajan;Giovanni Finocchio;Supriyo Datta;Kerem Y. Camsari","doi":"10.1109/JXCDC.2023.3256981","DOIUrl":"10.1109/JXCDC.2023.3256981","url":null,"abstract":"The transistor celebrated its 75th birthday in 2022. The continued scaling of the transistor defined by Moore’s law continues, albeit at a slower pace. Meanwhile, computing demands and energy consumption required by modern artificial intelligence (AI) algorithms have skyrocketed. As an alternative to scaling transistors for general-purpose computing, the integration of transistors with unconventional technologies has emerged as a promising path for domain-specific computing. In this article, we provide a full-stack review of probabilistic computing with p-bits as a representative example of the energy-efficient and domain-specific computing movement. We argue that p-bits could be used to build energy-efficient probabilistic systems, tailored for probabilistic algorithms and applications. From hardware, architecture, and algorithmic perspectives, we outline the main applications of probabilistic computers ranging from probabilistic machine learning (ML) and AI to combinatorial optimization and quantum simulation. Combining emerging nanodevices with the existing CMOS ecosystem will lead to probabilistic computers with orders of magnitude improvements in energy efficiency and probabilistic sampling, potentially unlocking previously unexplored regimes for powerful probabilistic algorithms.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 1","pages":"1-11"},"PeriodicalIF":2.4,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10068500.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41667070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Oscillator-Inspired Dynamical Systems to Solve Boolean Satisfiability 求解布尔可满足性的振子激励动力系统
IF 2.4
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2023-01-31 DOI: 10.1109/JXCDC.2023.3241045
Mohammad Khairul Bashar;Zongli Lin;Nikhil Shukla
{"title":"Oscillator-Inspired Dynamical Systems to Solve Boolean Satisfiability","authors":"Mohammad Khairul Bashar;Zongli Lin;Nikhil Shukla","doi":"10.1109/JXCDC.2023.3241045","DOIUrl":"10.1109/JXCDC.2023.3241045","url":null,"abstract":"Dynamical systems can offer a novel non-Boolean approach to computing. Specifically, the natural minimization of energy in the system is a valuable property for minimizing the objective functions of combinatorial optimization problems, many of which are still challenging to solve using conventional digital solvers. In this work, we design two oscillator-inspired dynamical systems to solve quintessential computationally intractable problems in Boolean satisfiability (SAT). The system dynamics are engineered such that they facilitate solutions to two different flavors of the SAT problem. We formulate the first dynamical system to compute the solution to the 3-SAT problem, while for the second system, we show that its dynamics map to the solution of the Max-not-all-equal (NAE)-3-SAT problem. Our work advances our understanding of how this physics-inspired approach can be used to address challenging problems in computing.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 1","pages":"12-20"},"PeriodicalIF":2.4,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10032530.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43177120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信