{"title":"Modeling of Bilayer Modulated RRAM and Its Array Performance for Compute-in-Memory Applications","authors":"Jia-Wei Lee;Tzu-Chin Chou;Po-An Chen;Meng-Hsueh Chiang","doi":"10.1109/JXCDC.2023.3311899","DOIUrl":null,"url":null,"abstract":"This article presents a modified compact model of resistive random access memory (RRAM) with a tunneling barrier. The bilayer modulated RRAM can be integrated into a higher density array, reducing leakage current in standby mode. The model demonstrates current transition behavior from low- to high-bias regions by considering both bulk-limited and electrode-limited transport mechanisms. This model can evaluate RRAM array performance under various pulsing conditions and device parameter variations with calibrated model cards. The compute-in-memory application requires precise current sum results hindered by the wire resistance loading effect. This study also evaluates various sizes of arrays suitable for performance improvement.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 2","pages":"151-158"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10239165","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10239165/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a modified compact model of resistive random access memory (RRAM) with a tunneling barrier. The bilayer modulated RRAM can be integrated into a higher density array, reducing leakage current in standby mode. The model demonstrates current transition behavior from low- to high-bias regions by considering both bulk-limited and electrode-limited transport mechanisms. This model can evaluate RRAM array performance under various pulsing conditions and device parameter variations with calibrated model cards. The compute-in-memory application requires precise current sum results hindered by the wire resistance loading effect. This study also evaluates various sizes of arrays suitable for performance improvement.