The Impact of Analog-to-Digital Converter Architecture and Variability on Analog Neural Network Accuracy

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Matthew Spear;Joshua E. Kim;Christopher H. Bennett;Sapan Agarwal;Matthew J. Marinella;T. Patrick Xiao
{"title":"The Impact of Analog-to-Digital Converter Architecture and Variability on Analog Neural Network Accuracy","authors":"Matthew Spear;Joshua E. Kim;Christopher H. Bennett;Sapan Agarwal;Matthew J. Marinella;T. Patrick Xiao","doi":"10.1109/JXCDC.2023.3315134","DOIUrl":null,"url":null,"abstract":"The analog-to-digital converter (ADC) is not only a key component in analog in-memory computing (IMC) accelerators but also a bottleneck for the efficiency and accuracy of these systems. While the tradeoffs between power consumption, latency, and area in ADC design are well studied, it is relatively unknown which ADC implementations are optimal for algorithmic accuracy, particularly for neural network inference. We explore the design space of the ADC with a focus on accuracy, investigating the sensitivity of neural network outputs to component variability inside the ADC and how this sensitivity depends on the ADC architecture. The compact models of the pipeline, cyclic, successive-approximation-register (SAR) and ramp ADCs are developed, and these models are used in a system-level accuracy simulation of analog neural network inference. Our results show how the accuracy on a complex image recognition benchmark (ResNet50 on ImageNet) depends on the capacitance mismatch, comparator offset, and effective number of bits (ENOB) for each of the four ADC architectures. We find that robustness to component variations depends strongly on the ADC design and that inference accuracy is particularly sensitive to the value-dependent error characteristics of the ADC, which cannot be captured by the conventional ENOB precision metric.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10250846","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10250846/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The analog-to-digital converter (ADC) is not only a key component in analog in-memory computing (IMC) accelerators but also a bottleneck for the efficiency and accuracy of these systems. While the tradeoffs between power consumption, latency, and area in ADC design are well studied, it is relatively unknown which ADC implementations are optimal for algorithmic accuracy, particularly for neural network inference. We explore the design space of the ADC with a focus on accuracy, investigating the sensitivity of neural network outputs to component variability inside the ADC and how this sensitivity depends on the ADC architecture. The compact models of the pipeline, cyclic, successive-approximation-register (SAR) and ramp ADCs are developed, and these models are used in a system-level accuracy simulation of analog neural network inference. Our results show how the accuracy on a complex image recognition benchmark (ResNet50 on ImageNet) depends on the capacitance mismatch, comparator offset, and effective number of bits (ENOB) for each of the four ADC architectures. We find that robustness to component variations depends strongly on the ADC design and that inference accuracy is particularly sensitive to the value-dependent error characteristics of the ADC, which cannot be captured by the conventional ENOB precision metric.
模数转换器结构和可变性对模拟神经网络精度的影响
模数转换器(ADC)不仅是模拟内存计算(IMC)加速器的关键组件,也是这些系统效率和精度的瓶颈。虽然 ADC 设计中功耗、延迟和面积之间的权衡已得到深入研究,但哪些 ADC 实现是算法精度(尤其是神经网络推理)的最佳选择却相对未知。我们以精度为重点探索 ADC 的设计空间,研究神经网络输出对 ADC 内部元件变化的敏感性,以及这种敏感性如何取决于 ADC 架构。我们开发了流水线、循环、逐次逼近寄存器 (SAR) 和斜坡 ADC 的紧凑模型,并将这些模型用于模拟神经网络推理的系统级精度仿真。我们的结果显示了复杂图像识别基准(ImageNet 上的 ResNet50)的准确性如何取决于四种 ADC 架构中每种架构的电容失配、比较器偏移和有效位数 (ENOB)。我们发现,对元件变化的鲁棒性在很大程度上取决于 ADC 的设计,而推理准确度对 ADC 的误差特性值特别敏感,传统的 ENOB 精度指标无法捕捉到这种误差特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信