Boosting RRAM-Based Mixed-Signal Accelerators in FD-SOI Technology for ML Applications

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Andrea Boni;Francesco Malena;Francesco Saccani;Michele Amoretti;Michele Caselli
{"title":"Boosting RRAM-Based Mixed-Signal Accelerators in FD-SOI Technology for ML Applications","authors":"Andrea Boni;Francesco Malena;Francesco Saccani;Michele Amoretti;Michele Caselli","doi":"10.1109/JXCDC.2023.3309713","DOIUrl":null,"url":null,"abstract":"This article presents the flipped (F)-2T2R resistive random access memory (RRAM) compute cell enhancing the performance of RRAM-based mixed-signal accelerators for deep neural networks (DNNs) in machine-learning (ML) applications. The F-2T2R cell is designed to exploit the features of the FD-SOI technology and it achieves a large increase in cell output impedance, compared to the standard 1-transistor 1-resistor (1T1R) cell. The article also describes the modeling of an F-2T2R-based accelerator and its transistor-level implementation in a 22-nm FD-SOI technology. The modeling results and the accelerator performance are validated by simulation. The proposed design can achieve an energy efficiency of up to 1260 1 bit-TOPS/W, with a memory array of 256 rows and columns. From the results of our analytical framework, a ResNet18, mapped on the accelerator, can obtain an accuracy reduction below 2%, with respect to the floating-point baseline, on the CIFAR-10 dataset.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10233848","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10233848/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the flipped (F)-2T2R resistive random access memory (RRAM) compute cell enhancing the performance of RRAM-based mixed-signal accelerators for deep neural networks (DNNs) in machine-learning (ML) applications. The F-2T2R cell is designed to exploit the features of the FD-SOI technology and it achieves a large increase in cell output impedance, compared to the standard 1-transistor 1-resistor (1T1R) cell. The article also describes the modeling of an F-2T2R-based accelerator and its transistor-level implementation in a 22-nm FD-SOI technology. The modeling results and the accelerator performance are validated by simulation. The proposed design can achieve an energy efficiency of up to 1260 1 bit-TOPS/W, with a memory array of 256 rows and columns. From the results of our analytical framework, a ResNet18, mapped on the accelerator, can obtain an accuracy reduction below 2%, with respect to the floating-point baseline, on the CIFAR-10 dataset.
在FD-SOI技术中增强基于ram的混合信号加速器用于ML应用
本文介绍了翻转(F)-2T2R电阻随机存取存储器(RRAM)计算单元,增强了机器学习(ML)应用中深度神经网络(dnn)中基于RRAM的混合信号加速器的性能。F-2T2R电池设计利用FD-SOI技术的特点,与标准的1晶体管1电阻(1T1R)电池相比,它实现了电池输出阻抗的大幅增加。本文还介绍了基于f - 22rr的加速器的建模及其在22纳米FD-SOI技术中的晶体管级实现。仿真结果验证了建模结果和加速器的性能。该设计可实现高达1260 bit-TOPS/W的能量效率,存储阵列为256行和256列。从我们的分析框架的结果来看,在加速器上映射的ResNet18,相对于CIFAR-10数据集上的浮点基线,可以获得低于2%的精度降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信