XNOR-VSH: A Valley-Spin Hall Effect-Based Compact and Energy-Efficient Synaptic Crossbar Array for Binary Neural Networks

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Karam Cho;Akul Malhotra;Sumeet Kumar Gupta
{"title":"XNOR-VSH: A Valley-Spin Hall Effect-Based Compact and Energy-Efficient Synaptic Crossbar Array for Binary Neural Networks","authors":"Karam Cho;Akul Malhotra;Sumeet Kumar Gupta","doi":"10.1109/JXCDC.2023.3320677","DOIUrl":null,"url":null,"abstract":"Binary neural networks (BNNs) have shown an immense promise for resource-constrained edge artificial intelligence (AI) platforms. However, prior designs typically either require two bit-cells to encode signed weights leading to an area overhead, or require complex peripheral circuitry. In this article, we address this issue by proposing a compact and low power in-memory computing (IMC) of XNOR-based dot products featuring signed weight encoding in a single bit-cell. Our approach utilizes valley-spin Hall (VSH) effect in monolayer tungsten di-selenide to design an XNOR bit-cell (named “XNOR-VSH”) with differential storage and access-transistor-less topology. We co-optimize the proposed VSH device and a memory array to enable robust in-memory dot product computations between signed binary inputs and signed binary weights with sense margin (SM)\n<inline-formula> <tex-math>$1 ~\\mu \\text{A}$ </tex-math></inline-formula>\n. Our results show that the proposed XNOR-VSH array achieves 4.8%–9.0% and 37%–63% lower IMC latency and energy, respectively, with 49%–64% smaller area compared to spin-transfer-torque (STT)-magnetic random access memory (MRAM) and spin-orbit-torque (SOT)-MRAM based XNOR-arrays. We also present the impact of hardware non-idealities and process variations in XNOR-VSH on system-level accuracy for the trained ResNet-18 BNNs using the CIFAR-10 dataset.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 2","pages":"99-107"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10268108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10268108/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Binary neural networks (BNNs) have shown an immense promise for resource-constrained edge artificial intelligence (AI) platforms. However, prior designs typically either require two bit-cells to encode signed weights leading to an area overhead, or require complex peripheral circuitry. In this article, we address this issue by proposing a compact and low power in-memory computing (IMC) of XNOR-based dot products featuring signed weight encoding in a single bit-cell. Our approach utilizes valley-spin Hall (VSH) effect in monolayer tungsten di-selenide to design an XNOR bit-cell (named “XNOR-VSH”) with differential storage and access-transistor-less topology. We co-optimize the proposed VSH device and a memory array to enable robust in-memory dot product computations between signed binary inputs and signed binary weights with sense margin (SM) $1 ~\mu \text{A}$ . Our results show that the proposed XNOR-VSH array achieves 4.8%–9.0% and 37%–63% lower IMC latency and energy, respectively, with 49%–64% smaller area compared to spin-transfer-torque (STT)-magnetic random access memory (MRAM) and spin-orbit-torque (SOT)-MRAM based XNOR-arrays. We also present the impact of hardware non-idealities and process variations in XNOR-VSH on system-level accuracy for the trained ResNet-18 BNNs using the CIFAR-10 dataset.
XNOR-VSH:一种基于谷自旋霍尔效应的紧凑节能的二元神经网络突触交叉栅阵列
二元神经网络(bnn)在资源受限的边缘人工智能(AI)平台上显示出巨大的前景。然而,先前的设计通常要么需要两个位单元来编码带符号的权重,导致面积开销,要么需要复杂的外围电路。在本文中,我们通过提出基于xnor的点积的紧凑和低功耗内存计算(IMC)来解决这个问题,该点积在单个位单元中具有符号权重编码。我们的方法利用单层二硒化钨中的谷自旋霍尔(VSH)效应来设计具有差分存储和无接入晶体管拓扑结构的XNOR位单元(命名为“XNOR-VSH”)。我们对所提出的VSH器件和内存阵列进行了共同优化,以实现有符号二进制输入和有符号二进制权值(SM) $1 ~\mu \text{a}$)之间的鲁棒内存点积计算。结果表明,与基于自旋-传递-扭矩(STT)-磁随机存取存储器(MRAM)和基于自旋-轨道-扭矩(SOT)-MRAM的xnor阵列相比,所提出的XNOR-VSH阵列的IMC延迟和能量分别降低了4.8% ~ 9.0%和37% ~ 63%,面积减少了49% ~ 64%。我们还介绍了XNOR-VSH中硬件非理想性和过程变化对使用CIFAR-10数据集训练的ResNet-18 bnn的系统级精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信