{"title":"XNOR-VSH: A Valley-Spin Hall Effect-Based Compact and Energy-Efficient Synaptic Crossbar Array for Binary Neural Networks","authors":"Karam Cho;Akul Malhotra;Sumeet Kumar Gupta","doi":"10.1109/JXCDC.2023.3320677","DOIUrl":null,"url":null,"abstract":"Binary neural networks (BNNs) have shown an immense promise for resource-constrained edge artificial intelligence (AI) platforms. However, prior designs typically either require two bit-cells to encode signed weights leading to an area overhead, or require complex peripheral circuitry. In this article, we address this issue by proposing a compact and low power in-memory computing (IMC) of XNOR-based dot products featuring signed weight encoding in a single bit-cell. Our approach utilizes valley-spin Hall (VSH) effect in monolayer tungsten di-selenide to design an XNOR bit-cell (named “XNOR-VSH”) with differential storage and access-transistor-less topology. We co-optimize the proposed VSH device and a memory array to enable robust in-memory dot product computations between signed binary inputs and signed binary weights with sense margin (SM)\n<inline-formula> <tex-math>$1 ~\\mu \\text{A}$ </tex-math></inline-formula>\n. Our results show that the proposed XNOR-VSH array achieves 4.8%–9.0% and 37%–63% lower IMC latency and energy, respectively, with 49%–64% smaller area compared to spin-transfer-torque (STT)-magnetic random access memory (MRAM) and spin-orbit-torque (SOT)-MRAM based XNOR-arrays. We also present the impact of hardware non-idealities and process variations in XNOR-VSH on system-level accuracy for the trained ResNet-18 BNNs using the CIFAR-10 dataset.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10268108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10268108/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Binary neural networks (BNNs) have shown an immense promise for resource-constrained edge artificial intelligence (AI) platforms. However, prior designs typically either require two bit-cells to encode signed weights leading to an area overhead, or require complex peripheral circuitry. In this article, we address this issue by proposing a compact and low power in-memory computing (IMC) of XNOR-based dot products featuring signed weight encoding in a single bit-cell. Our approach utilizes valley-spin Hall (VSH) effect in monolayer tungsten di-selenide to design an XNOR bit-cell (named “XNOR-VSH”) with differential storage and access-transistor-less topology. We co-optimize the proposed VSH device and a memory array to enable robust in-memory dot product computations between signed binary inputs and signed binary weights with sense margin (SM)
$1 ~\mu \text{A}$
. Our results show that the proposed XNOR-VSH array achieves 4.8%–9.0% and 37%–63% lower IMC latency and energy, respectively, with 49%–64% smaller area compared to spin-transfer-torque (STT)-magnetic random access memory (MRAM) and spin-orbit-torque (SOT)-MRAM based XNOR-arrays. We also present the impact of hardware non-idealities and process variations in XNOR-VSH on system-level accuracy for the trained ResNet-18 BNNs using the CIFAR-10 dataset.