{"title":"The category of Z−graded manifolds: What happens if you do not stay positive","authors":"Alexei Kotov , Vladimir Salnikov","doi":"10.1016/j.difgeo.2024.102109","DOIUrl":"10.1016/j.difgeo.2024.102109","url":null,"abstract":"<div><p>In this paper we discuss the categorical properties of <span><math><mi>Z</mi></math></span>-graded manifolds. We start by describing the local model paying special attention to the differences in comparison to the <span><math><mi>N</mi></math></span>-graded case. In particular we explain the origin of formality for the functional space and spell-out the structure of the power series. Then we make this construction intrinsic using a new type of filtrations. This sums up to proper definitions of objects and morphisms in the category. We also formulate the analog of the Borel's lemma for the functional spaces on <span><math><mi>Z</mi></math></span>-graded manifolds and the analogue of Batchelor's theorem for the global structure of them.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102109"},"PeriodicalIF":0.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926224524000020/pdfft?md5=a5f043ddb99e39117ce84444d49aff31&pid=1-s2.0-S0926224524000020-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On homogeneous closed gradient Laplacian solitons","authors":"Nicholas Ng","doi":"10.1016/j.difgeo.2024.102108","DOIUrl":"https://doi.org/10.1016/j.difgeo.2024.102108","url":null,"abstract":"<div><p>We prove a structure theorem for homogeneous closed gradient Laplacian solitons and use it to show some examples of closed Laplacian solitons cannot be made gradient. More specifically, we show that the Laplacian solitons on nilpotent Lie groups found by Nicolini are not gradient up to homothetic <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures except for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>7</mn></mrow></msup></math></span>, where the potential function must be of a certain form. We also show that one of the closed <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures constructed by Fernández-Fino-Manero cannot be a gradient soliton. We then examine the structure of almost abelian solvmanifolds admitting closed non-torsion-free gradient Laplacian solitons.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102108"},"PeriodicalIF":0.5,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139653196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The S-curvature of Finsler warped product metrics","authors":"Mehran Gabrani , Bahman Rezaei , Esra Sengelen Sevim","doi":"10.1016/j.difgeo.2023.102105","DOIUrl":"10.1016/j.difgeo.2023.102105","url":null,"abstract":"<div><p>The class of warped product metrics can often be interpreted as key space models for general theory of relativity and in the theory of space-time structure. In this paper, we study one of the most important non-Riemannian quantities in Finsler geometry which is called the S-curvature. We examined the behavior of the S-curvature in the Finsler warped product metrics. We are going to prove that every Finsler warped product metric <span><math><mi>R</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> has almost isotropic <em>S</em>-curvature if and only if it is a weakly Berwald metric. Moreover, we show that every Finsler warped product metric has isotropic <em>S</em>-curvature if and only if <em>S</em>-curvature vanishes.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102105"},"PeriodicalIF":0.5,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139585862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remarks on exact G2-structures on compact manifolds","authors":"Aaron Kennon","doi":"10.1016/j.difgeo.2023.102101","DOIUrl":"10.1016/j.difgeo.2023.102101","url":null,"abstract":"<div><p>An important open question related to the study of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-holonomy manifolds concerns whether or not a compact seven-manifold can support an exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure. To provide insight into this question, we identify various relationships between the two-form underlying an exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure, the torsion of the <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure, and the curvatures of the associated metric. In addition to establishing identities valid for any hypothetical exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure, we also consider exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures subject to additional constraints, for instance proving incompatibility between the exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> and Extremally Ricci-Pinched conditions and establish new identities for soliton solutions of the Laplacian flow.</span></p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102101"},"PeriodicalIF":0.5,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139585780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prolongations, invariants, and fundamental identities of geometric structures","authors":"Jaehyun Hong , Tohru Morimoto","doi":"10.1016/j.difgeo.2023.102107","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102107","url":null,"abstract":"<div><p>Working in the framework of nilpotent<span> geometry, we give a unified scheme for the equivalence problem of geometric structures which extends and integrates the earlier works by Cartan, Singer-Sternberg, Tanaka, and Morimoto.</span></p><p>By giving a new formulation of the higher order geometric structures and the universal frame bundles, we reconstruct the step prolongation of Singer-Sternberg and Tanaka. We then investigate the structure function <em>γ</em> of the complete step prolongation of a proper geometric structure by expanding it into components <span><math><mi>γ</mi><mo>=</mo><mi>κ</mi><mo>+</mo><mi>τ</mi><mo>+</mo><mi>σ</mi></math></span> and establish the fundamental identities for <em>κ</em>, <em>τ</em>, <em>σ</em>. This then enables us to study the equivalence problem of geometric structures in full generality and to extend applications largely to the geometric structures which have not necessarily Cartan connections.</p><p>Among all we give an algorithm to construct a complete system of invariants for any higher order proper geometric structure of constant symbol by making use of generalized Spencer cohomology group associated to the symbol of the geometric structure. We then discuss thoroughly the equivalence problem for geometric structure in both cases of infinite and finite type.</p><p>We also give a characterization of the Cartan connections by means of the structure function <em>τ</em> and make clear where the Cartan connections are placed in the perspective of the step prolongations.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"92 ","pages":"Article 102107"},"PeriodicalIF":0.5,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139480185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcos M. Alexandrino, Fernando M. Escobosa, Marcelo K. Inagaki
{"title":"Traveling along horizontal broken geodesics of a homogeneous Finsler submersion","authors":"Marcos M. Alexandrino, Fernando M. Escobosa, Marcelo K. Inagaki","doi":"10.1016/j.difgeo.2023.102106","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102106","url":null,"abstract":"<div><p><span>In this paper, we discuss how to travel along horizontal broken geodesics of a homogeneous Finsler submersion<span>, i.e., we study, what in Riemannian geometry was called by Wilking, the dual leaves. More precisely, we investigate the attainable sets </span></span><span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> of the set of analytic vector fields <span><math><mi>C</mi></math></span> determined by the family of horizontal unit geodesic vector fields <span><math><mi>C</mi></math></span> to the fibers <span><math><mi>F</mi><mo>=</mo><mo>{</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo><mo>}</mo></math></span> of a homogeneous analytic Finsler submersion <span><math><mi>ρ</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>B</mi></math></span>. Since reverse of geodesics don't need to be geodesics in Finsler geometry, one can have examples on non compact Finsler manifolds <em>M</em><span> where the attainable sets (the dual leaves) are no longer orbits or even submanifolds. Nevertheless we prove that, when </span><em>M</em> is compact and the orbits of <span><math><mi>C</mi></math></span> are embedded, then the attainable sets coincide with the orbits. Furthermore, if the flag curvature is positive then <em>M</em> coincides with the attainable set of each point. In other words, fixed two points of <em>M</em>, one can travel from one point to the other along horizontal broken geodesics.</p><p>In addition, we show that each orbit <span><math><mi>O</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> of <span><math><mi>C</mi></math></span> associated to a singular Finsler foliation coincides with <em>M</em><span><span>, when the flag curvature is positive, i.e., we prove Wilking's result in Finsler context. In particular we review Wilking's transversal </span>Jacobi fields in Finsler case.</span></p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102106"},"PeriodicalIF":0.5,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139467784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A normal line congruence and minimal ruled Lagrangian submanifolds in CPn","authors":"Jong Taek Cho , Makoto Kimura","doi":"10.1016/j.difgeo.2023.102099","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102099","url":null,"abstract":"<div><p><span>We characterize Lagrangian </span>submanifolds<span><span> in complex projective space for which each parallel submanifold along normal geodesics with respect to a </span>unit normal vector field<span> is Lagrangian, by using a normal line congruence of the Lagrangian submanifold to complex 2-plane Grassmannian and quaternionic Kähler structure. As a special case, we can construct minimal ruled Lagrangian submanifolds in complex projective space from an austere hypersurface in sphere with non-vanishing Gauss-Kronecker curvature.</span></span></p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102099"},"PeriodicalIF":0.5,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antipodal sets of pseudo-Riemannian symmetric R-spaces","authors":"Kyoji Sugimoto","doi":"10.1016/j.difgeo.2023.102104","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102104","url":null,"abstract":"<div><p>We show that antipodal sets of pseudo-Riemannian symmetric <em>R</em>-spaces associated with non-degenerate Jordan triple systems satisfy the following two properties: (1) Any antipodal set is included in a great antipodal set, and (2) any two great antipodal sets are transformed into each other by an isometry.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102104"},"PeriodicalIF":0.5,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139379283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the prescribed fractional Q-curvatures problem on Sn under pinching conditions","authors":"Zhongwei Tang , Ning Zhou","doi":"10.1016/j.difgeo.2023.102103","DOIUrl":"10.1016/j.difgeo.2023.102103","url":null,"abstract":"<div><p>In this paper, we study the prescribed fractional <em>Q</em>-curvatures problem of order 2<em>σ</em> on the <em>n</em>-dimensional standard sphere <span><math><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>, where <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>σ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>. By combining critical points at infinity approach with Morse theory we obtain new existence results under suitable pinching conditions.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102103"},"PeriodicalIF":0.5,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139092333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"When are shrinking gradient Ricci soliton compact","authors":"Yuanyuan Qu, Guoqiang Wu","doi":"10.1016/j.difgeo.2023.102102","DOIUrl":"10.1016/j.difgeo.2023.102102","url":null,"abstract":"<div><p>Suppose <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> is a complete shrinking gradient Ricci soliton. We give a sufficient condition for a soliton to be compact, generalizing previous result of Munteanu-Wang <span>[17]</span>. As an application, we give a classification of <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>,</mo><mi>g</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> under some natural conditions.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102102"},"PeriodicalIF":0.5,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139078972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}