光锥中作为超曲面的保角平流形的体积

Pub Date : 2024-08-14 DOI:10.1016/j.difgeo.2024.102173
Riku Kishida
{"title":"光锥中作为超曲面的保角平流形的体积","authors":"Riku Kishida","doi":"10.1016/j.difgeo.2024.102173","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we focus on a conformally flat Riemannian manifold <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>)</mo></math></span> of dimension <em>n</em> isometrically immersed into the <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional light-cone <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> as a hypersurface. We compute the first and the second variational formulas on the volume of such hypersurfaces. Such a hypersurface <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is not only immersed in <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> but also isometrically realized as a hypersurface of a certain null hypersurface <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> in the Minkowski spacetime, which is different from <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. Moreover, <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> has a volume-maximizing property in <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The volume of conformally flat manifolds as hypersurfaces in the light-cone\",\"authors\":\"Riku Kishida\",\"doi\":\"10.1016/j.difgeo.2024.102173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we focus on a conformally flat Riemannian manifold <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>)</mo></math></span> of dimension <em>n</em> isometrically immersed into the <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional light-cone <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> as a hypersurface. We compute the first and the second variational formulas on the volume of such hypersurfaces. Such a hypersurface <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is not only immersed in <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> but also isometrically realized as a hypersurface of a certain null hypersurface <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> in the Minkowski spacetime, which is different from <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. Moreover, <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> has a volume-maximizing property in <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们把 n 维共形平坦黎曼流形 (Mn,g)等轴测浸入 (n+1)-dimensional light-cone Λn+1 的超曲面作为研究对象。我们计算这种超曲面体积的第一和第二变分公式。这样的超曲面 Mn 不仅浸没在Λn+1 中,而且等距地实现为明考斯基时空中某个与Λn+1 不同的空超曲面 Nn+1 的超曲面。此外,Mn 在 Nn+1 中具有体积最大化特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The volume of conformally flat manifolds as hypersurfaces in the light-cone

In this paper, we focus on a conformally flat Riemannian manifold (Mn,g) of dimension n isometrically immersed into the (n+1)-dimensional light-cone Λn+1 as a hypersurface. We compute the first and the second variational formulas on the volume of such hypersurfaces. Such a hypersurface Mn is not only immersed in Λn+1 but also isometrically realized as a hypersurface of a certain null hypersurface Nn+1 in the Minkowski spacetime, which is different from Λn+1. Moreover, Mn has a volume-maximizing property in Nn+1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信