{"title":"Singularities of focal sets of pseudo-spherical framed immersions in the three-dimensional anti-de Sitter space","authors":"O. Oğulcan Tuncer","doi":"10.1016/j.difgeo.2024.102175","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce pseudo-spherical non-null framed curves in the three-dimensional anti-de Sitter spacetime and establish the existence and uniqueness of these curves. We then give moving frames along pseudo-spherical framed curves, which are well-defined even at singular points of the curve. These moving frames enable us to define evolutes and focal surfaces of pseudo-spherical framed immersions. We investigate the singularity properties of these evolutes and focal surfaces. We then reveal that the evolute of a pseudo-spherical framed immersion is the set of singular points of its focal surface. We also interpret evolutes and focal surfaces as the discriminant and the secondary discriminant sets of certain height functions, which allows us to explain evolutes and focal surfaces as wavefronts from the viewpoint of Legendrian singularity theory. Examples are provided to flesh out our results, and we use the hyperbolic Hopf map to visualize these examples.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"96 ","pages":"Article 102175"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000688","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce pseudo-spherical non-null framed curves in the three-dimensional anti-de Sitter spacetime and establish the existence and uniqueness of these curves. We then give moving frames along pseudo-spherical framed curves, which are well-defined even at singular points of the curve. These moving frames enable us to define evolutes and focal surfaces of pseudo-spherical framed immersions. We investigate the singularity properties of these evolutes and focal surfaces. We then reveal that the evolute of a pseudo-spherical framed immersion is the set of singular points of its focal surface. We also interpret evolutes and focal surfaces as the discriminant and the secondary discriminant sets of certain height functions, which allows us to explain evolutes and focal surfaces as wavefronts from the viewpoint of Legendrian singularity theory. Examples are provided to flesh out our results, and we use the hyperbolic Hopf map to visualize these examples.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.