Singularities of focal sets of pseudo-spherical framed immersions in the three-dimensional anti-de Sitter space

IF 0.6 4区 数学 Q3 MATHEMATICS
O. Oğulcan Tuncer
{"title":"Singularities of focal sets of pseudo-spherical framed immersions in the three-dimensional anti-de Sitter space","authors":"O. Oğulcan Tuncer","doi":"10.1016/j.difgeo.2024.102175","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce pseudo-spherical non-null framed curves in the three-dimensional anti-de Sitter spacetime and establish the existence and uniqueness of these curves. We then give moving frames along pseudo-spherical framed curves, which are well-defined even at singular points of the curve. These moving frames enable us to define evolutes and focal surfaces of pseudo-spherical framed immersions. We investigate the singularity properties of these evolutes and focal surfaces. We then reveal that the evolute of a pseudo-spherical framed immersion is the set of singular points of its focal surface. We also interpret evolutes and focal surfaces as the discriminant and the secondary discriminant sets of certain height functions, which allows us to explain evolutes and focal surfaces as wavefronts from the viewpoint of Legendrian singularity theory. Examples are provided to flesh out our results, and we use the hyperbolic Hopf map to visualize these examples.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"96 ","pages":"Article 102175"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000688","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce pseudo-spherical non-null framed curves in the three-dimensional anti-de Sitter spacetime and establish the existence and uniqueness of these curves. We then give moving frames along pseudo-spherical framed curves, which are well-defined even at singular points of the curve. These moving frames enable us to define evolutes and focal surfaces of pseudo-spherical framed immersions. We investigate the singularity properties of these evolutes and focal surfaces. We then reveal that the evolute of a pseudo-spherical framed immersion is the set of singular points of its focal surface. We also interpret evolutes and focal surfaces as the discriminant and the secondary discriminant sets of certain height functions, which allows us to explain evolutes and focal surfaces as wavefronts from the viewpoint of Legendrian singularity theory. Examples are provided to flesh out our results, and we use the hyperbolic Hopf map to visualize these examples.

三维反德西特空间中伪球面框架沉浸的焦点集奇点
我们在三维反德西特时空中引入了伪球面非空框架曲线,并确定了这些曲线的存在性和唯一性。然后,我们给出了沿着伪球形有框曲线的运动框架,这些框架即使在曲线的奇点处也定义明确。这些移动框架使我们能够定义伪球面框架沉浸的演化过程和焦点面。我们研究了这些演化面和焦点面的奇异性。然后,我们揭示了伪球形框架浸入的演化是其焦点表面的奇异点集合。我们还将演化面和焦点面解释为某些高度函数的判别式和二次判别式集,这使我们能够从 Legendrian 奇异性理论的角度将演化面和焦点面解释为波面。我们提供了一些例子来充实我们的结果,并使用双曲霍普夫图来直观地展示这些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信