{"title":"Some results on Kenmotsu and Sasakian statistical manifolds","authors":"","doi":"10.1016/j.difgeo.2024.102179","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we mainly prove that on Kenmotsu and Sasakian statistical manifolds, the Riemannian curvature tensor and the statistical curvature tensor fields are equal, only if their covariant derivatives are equal.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092622452400072X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we mainly prove that on Kenmotsu and Sasakian statistical manifolds, the Riemannian curvature tensor and the statistical curvature tensor fields are equal, only if their covariant derivatives are equal.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.