Topology of toric gravitational instantons

Pub Date : 2024-07-31 DOI:10.1016/j.difgeo.2024.102171
Gustav Nilsson
{"title":"Topology of toric gravitational instantons","authors":"Gustav Nilsson","doi":"10.1016/j.difgeo.2024.102171","DOIUrl":null,"url":null,"abstract":"<div><p>For an asymptotically locally Euclidean (ALE) or asymptotically locally flat (ALF) gravitational instanton <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> with toric symmetry, we express the signature of <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> directly in terms of its rod structure. Applying Hitchin–Thorpe-type inequalities for Ricci-flat ALE/ALF manifolds, we formulate, as a step toward a classification of toric ALE/ALF instantons, necessary conditions that the rod structures of such spaces must satisfy. Finally, we apply these results to the study of rod structures with three turning points.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926224524000640/pdfft?md5=1af94bc08a68f11151c59c10b99043ce&pid=1-s2.0-S0926224524000640-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For an asymptotically locally Euclidean (ALE) or asymptotically locally flat (ALF) gravitational instanton (M,g) with toric symmetry, we express the signature of (M,g) directly in terms of its rod structure. Applying Hitchin–Thorpe-type inequalities for Ricci-flat ALE/ALF manifolds, we formulate, as a step toward a classification of toric ALE/ALF instantons, necessary conditions that the rod structures of such spaces must satisfy. Finally, we apply these results to the study of rod structures with three turning points.

分享
查看原文
环状引力瞬子拓扑学
对于具有环对称性的渐近局部欧几里得(ALE)或渐近局部平坦(ALF)引力瞬子(M,g),我们直接用其杆结构来表达(M,g)的特征。应用里奇平坦 ALE/ALF 流形的希钦-托普(Hitchin-Thorpe)型不等式,我们提出了这类空间的杆结构必须满足的必要条件,作为对环状 ALE/ALF 瞬子进行分类的一步。最后,我们将这些结果应用于研究具有三个转折点的杆状结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信