Existence and density results of conformal metrics with prescribed higher order Q-curvature on Sn

IF 0.6 4区 数学 Q3 MATHEMATICS
Zhongwei Tang , Heming Wang , Ning Zhou
{"title":"Existence and density results of conformal metrics with prescribed higher order Q-curvature on Sn","authors":"Zhongwei Tang ,&nbsp;Heming Wang ,&nbsp;Ning Zhou","doi":"10.1016/j.difgeo.2024.102172","DOIUrl":null,"url":null,"abstract":"<div><p>We prove some results on the density and multiplicity of positive solutions to the conformal <em>Q</em>-curvature equations <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mi>K</mi><msup><mrow><mi>v</mi></mrow><mrow><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn><mi>m</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi></mrow></mfrac></mrow></msup></math></span> on the <em>n</em>-dimensional standard unit sphere <span><math><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> for all <span><math><mi>m</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span> and <em>m</em> is an integer, where <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is the intertwining operator of order 2<em>m</em> and <em>K</em> is the prescribed <em>Q</em>-curvature function. More specifically, by using the variational gluing method, refined analysis of bubbling behavior, Pohozaev identity, as well as the blow up argument for nonlinear integral equations, we construct arbitrarily many multi-bump solutions. In particular, we show the smooth positive <em>Q</em>-curvature functions of metrics conformal to <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> are dense in the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> topology. Existence results of infinitely many positive solutions to the poly-harmonic equations <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>u</mi><mo>=</mo><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn><mi>m</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi></mrow></mfrac></mrow></msup></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> being asymptotically periodic are also obtained.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"96 ","pages":"Article 102172"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000652","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove some results on the density and multiplicity of positive solutions to the conformal Q-curvature equations Pm(v)=Kvn+2mn2m on the n-dimensional standard unit sphere (Sn,g0) for all m[1,n2) and m is an integer, where Pm is the intertwining operator of order 2m and K is the prescribed Q-curvature function. More specifically, by using the variational gluing method, refined analysis of bubbling behavior, Pohozaev identity, as well as the blow up argument for nonlinear integral equations, we construct arbitrarily many multi-bump solutions. In particular, we show the smooth positive Q-curvature functions of metrics conformal to g0 are dense in the C0 topology. Existence results of infinitely many positive solutions to the poly-harmonic equations (Δ)mu=K(x)un+2mn2m in Rn with K(x) being asymptotically periodic are also obtained.

Sn上具有规定高阶Q曲率的共形度量的存在性和密度结果
我们证明了在所有 m∈[1,n2] 且 m 为整数的 n 维标准单元球 (Sn,g0) 上共形 Q 曲率方程 Pm(v)=Kvn+2mn-2m 的正解密度和多重性的一些结果,其中 Pm 是阶数为 2m 的交织算子,K 是规定的 Q 曲率函数。更具体地说,通过使用变分胶合方法、气泡行为的精细分析、Pohozaev 特性以及非线性积分方程的炸毁论证,我们构造了任意多的多气泡解。特别是,我们证明了与 g0 保形的度量的光滑正 Q曲率函数在 C0 拓扑中是密集的。我们还得到了 Rn 中 K(x) 为渐近周期的多谐方程 (-Δ)mu=K(x)un+2mn-2m 的无限多正解的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信