{"title":"A new perspective on border completion in visual cortex as bicycle rear wheel geodesics paths via sub Riemannian Hamiltonian formalism","authors":"R. Fioresi , A. Marraffa , J. Petkovic","doi":"10.1016/j.difgeo.2024.102125","DOIUrl":"https://doi.org/10.1016/j.difgeo.2024.102125","url":null,"abstract":"<div><p>We present a review of known models and a new simple mathematical modelling for border completion in the visual cortex V1 highlighting the striking analogies with bicycle rear wheel motions in the plane.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102125"},"PeriodicalIF":0.5,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140134564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gromoll–Meyer's actions and the geometry of (exotic) spacetimes","authors":"Leonardo F. Cavenaghi, Lino Grama","doi":"10.1016/j.difgeo.2024.102121","DOIUrl":"https://doi.org/10.1016/j.difgeo.2024.102121","url":null,"abstract":"<div><p>Since the advent of new pairwise non-diffeomorphic structures on smooth manifolds, it has been questioned whether two topologically identical manifolds could admit different geometries. Not surprisingly, physicists have wondered whether a different smooth structure assumption to some classical known model could produce different physical meanings. Motivated by the works <span>[27]</span>, <span>[2]</span>, <span>[3]</span>, <span>[18]</span>, in this paper, we inaugurate a very computational manner to produce physical models on classical and exotic spheres that can be built equivariantly, such as the classical Gromoll–Meyer exotic spheres. As first applications, we produce Lorentzian metrics on homeomorphic but not diffeomorphic manifolds that enjoy the same physical properties, such as geodesic completeness, positive Ricci curvature, and compatible time orientation. These constructions can be pulled back to higher models, such as exotic ten spheres bounding spin manifolds, to be approached in forthcoming papers.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102121"},"PeriodicalIF":0.5,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structures of sympathetic Lie conformal superalgebras","authors":"Meher Abdaoui","doi":"10.1016/j.difgeo.2024.102122","DOIUrl":"https://doi.org/10.1016/j.difgeo.2024.102122","url":null,"abstract":"<div><p>In this paper, we'll introduce the concept of sympathetic Lie conformal superalgebras and show that some classical properties of Lie conformal superalgebras are still valid for sympathetic Lie conformal superalgebras. We prove that the unique decomposition of each sympathetic Lie conformal superalgebra into a direct sum of indecomposable sympathetic ideals. We also show the existence of a greatest sympathetic ideal and a sympathetic decomposition in every perfect Lie conformal superalgebra. In the end, we also study the ideal <span><math><mi>I</mi></math></span> of a Lie conformal superalgebra <span><math><mi>R</mi></math></span> such that <span><math><mi>R</mi><mo>/</mo><mi>I</mi></math></span> is a sympathetic Lie conformal superalgebra.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102122"},"PeriodicalIF":0.5,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140104001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convergence rate of the weighted Yamabe flow","authors":"Pak Tung Ho , Jinwoo Shin , Zetian Yan","doi":"10.1016/j.difgeo.2024.102119","DOIUrl":"https://doi.org/10.1016/j.difgeo.2024.102119","url":null,"abstract":"<div><p>The weighted Yamabe flow is the geometric flow introduced to study the weighted Yamabe problem on smooth metric measure spaces. Carlotto, Chodosh and Rubinstein have studied the convergence rate of the Yamabe flow. Inspired by their result, we study in this paper the convergence rate of the weighted Yamabe flow.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102119"},"PeriodicalIF":0.5,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On weakly stretch Kropina metrics","authors":"A. Tayebi, F. Barati","doi":"10.1016/j.difgeo.2024.102118","DOIUrl":"https://doi.org/10.1016/j.difgeo.2024.102118","url":null,"abstract":"<div><p>In this paper, we study weakly stretch Kropina metrics and prove a rigidity theorem. We show that the associated one-form of a weakly stretch Kropina metric is conformally Killing with respect to the associated Riemannian metric. We find that any weakly stretch Kropina metric has vanishing S-curvature. Then, we prove that every weakly stretch Kropina metric is a Berwald metric. It turns out that every R-quadratic Kropina metric is a Berwald metric. Finally, we show that every positively complete C-reducible metric is R-quadratic if and only if it is Berwaldian.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102118"},"PeriodicalIF":0.5,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139914480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Landsberg Finsler warped product metrics with zero flag curvature","authors":"Daxiao Zheng","doi":"10.1016/j.difgeo.2023.102082","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102082","url":null,"abstract":"<div><p>In this paper, we study Finsler warped product metrics. We obtain the differential equations that characterize Landsberg Finsler warped product metrics. By solving these equations, we obtain the expression of these metrics. Furthermore, we construct a class of almost regular Finsler warped product metrics <em>F</em> with the following properties: (1) <em>F</em> is a Landsberg metric; (2) <em>F</em> is not a Berwald metric; (3) <em>F</em> has zero flag curvature (or Ricci curvature).</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102082"},"PeriodicalIF":0.5,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139936016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The category of Z−graded manifolds: What happens if you do not stay positive","authors":"Alexei Kotov , Vladimir Salnikov","doi":"10.1016/j.difgeo.2024.102109","DOIUrl":"10.1016/j.difgeo.2024.102109","url":null,"abstract":"<div><p>In this paper we discuss the categorical properties of <span><math><mi>Z</mi></math></span>-graded manifolds. We start by describing the local model paying special attention to the differences in comparison to the <span><math><mi>N</mi></math></span>-graded case. In particular we explain the origin of formality for the functional space and spell-out the structure of the power series. Then we make this construction intrinsic using a new type of filtrations. This sums up to proper definitions of objects and morphisms in the category. We also formulate the analog of the Borel's lemma for the functional spaces on <span><math><mi>Z</mi></math></span>-graded manifolds and the analogue of Batchelor's theorem for the global structure of them.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102109"},"PeriodicalIF":0.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926224524000020/pdfft?md5=a5f043ddb99e39117ce84444d49aff31&pid=1-s2.0-S0926224524000020-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On homogeneous closed gradient Laplacian solitons","authors":"Nicholas Ng","doi":"10.1016/j.difgeo.2024.102108","DOIUrl":"https://doi.org/10.1016/j.difgeo.2024.102108","url":null,"abstract":"<div><p>We prove a structure theorem for homogeneous closed gradient Laplacian solitons and use it to show some examples of closed Laplacian solitons cannot be made gradient. More specifically, we show that the Laplacian solitons on nilpotent Lie groups found by Nicolini are not gradient up to homothetic <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures except for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>7</mn></mrow></msup></math></span>, where the potential function must be of a certain form. We also show that one of the closed <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures constructed by Fernández-Fino-Manero cannot be a gradient soliton. We then examine the structure of almost abelian solvmanifolds admitting closed non-torsion-free gradient Laplacian solitons.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102108"},"PeriodicalIF":0.5,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139653196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The S-curvature of Finsler warped product metrics","authors":"Mehran Gabrani , Bahman Rezaei , Esra Sengelen Sevim","doi":"10.1016/j.difgeo.2023.102105","DOIUrl":"10.1016/j.difgeo.2023.102105","url":null,"abstract":"<div><p>The class of warped product metrics can often be interpreted as key space models for general theory of relativity and in the theory of space-time structure. In this paper, we study one of the most important non-Riemannian quantities in Finsler geometry which is called the S-curvature. We examined the behavior of the S-curvature in the Finsler warped product metrics. We are going to prove that every Finsler warped product metric <span><math><mi>R</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> has almost isotropic <em>S</em>-curvature if and only if it is a weakly Berwald metric. Moreover, we show that every Finsler warped product metric has isotropic <em>S</em>-curvature if and only if <em>S</em>-curvature vanishes.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102105"},"PeriodicalIF":0.5,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139585862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remarks on exact G2-structures on compact manifolds","authors":"Aaron Kennon","doi":"10.1016/j.difgeo.2023.102101","DOIUrl":"10.1016/j.difgeo.2023.102101","url":null,"abstract":"<div><p>An important open question related to the study of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-holonomy manifolds concerns whether or not a compact seven-manifold can support an exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure. To provide insight into this question, we identify various relationships between the two-form underlying an exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure, the torsion of the <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure, and the curvatures of the associated metric. In addition to establishing identities valid for any hypothetical exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure, we also consider exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures subject to additional constraints, for instance proving incompatibility between the exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> and Extremally Ricci-Pinched conditions and establish new identities for soliton solutions of the Laplacian flow.</span></p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102101"},"PeriodicalIF":0.5,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139585780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}