{"title":"On a result of K. Okumura","authors":"Patrick J. Ryan","doi":"10.1016/j.difgeo.2024.102188","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this paper is to clarify and extend the result of K. Okumura in <span><span>[7]</span></span> concerning hypersurfaces in the non-flat complex space forms <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><mi>C</mi><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> whose *-Ricci tensor is <span><math><mi>D</mi></math></span>-recurrent.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102188"},"PeriodicalIF":0.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926224524000810/pdfft?md5=ad2177aec7e5fc15bfcc3be1b916d84f&pid=1-s2.0-S0926224524000810-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000810","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this paper is to clarify and extend the result of K. Okumura in [7] concerning hypersurfaces in the non-flat complex space forms and whose *-Ricci tensor is -recurrent.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.