{"title":"S3 × S3 上的近半平面 SU(3) 结构","authors":"","doi":"10.1016/j.difgeo.2024.102187","DOIUrl":null,"url":null,"abstract":"<div><p>We study the <span><math><mi>SU</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>-structure induced on an oriented hypersurface of a 7-dimensional manifold with a nearly parallel <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure. Such <span><math><mi>SU</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>-structures are called <em>nearly half-flat</em>. We characterise the left invariant nearly half-flat structures on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. This characterisation then helps us to systematically analyse nearly parallel <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures on an interval times <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nearly half-flat SU(3) structures on S3 × S3\",\"authors\":\"\",\"doi\":\"10.1016/j.difgeo.2024.102187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the <span><math><mi>SU</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>-structure induced on an oriented hypersurface of a 7-dimensional manifold with a nearly parallel <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure. Such <span><math><mi>SU</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>-structures are called <em>nearly half-flat</em>. We characterise the left invariant nearly half-flat structures on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. This characterisation then helps us to systematically analyse nearly parallel <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures on an interval times <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000809\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000809","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study the -structure induced on an oriented hypersurface of a 7-dimensional manifold with a nearly parallel -structure. Such -structures are called nearly half-flat. We characterise the left invariant nearly half-flat structures on . This characterisation then helps us to systematically analyse nearly parallel -structures on an interval times .
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.