{"title":"Mean curvature flows of graphs sliding off to infinity in warped product manifolds","authors":"Naotoshi Fujihara","doi":"10.1016/j.difgeo.2024.102207","DOIUrl":null,"url":null,"abstract":"<div><div>We study mean curvature flows in a warped product manifold defined by a closed Riemannian manifold and <span><math><mi>R</mi></math></span>. In such a warped product manifold, we can define the notion of a graph, called a geodesic graph. We prove that the curve shortening flow preserves a geodesic graph for any warping function, and the mean curvature flow of hypersurfaces preserves a geodesic graph for some monotone convex warping functions. In particular, we consider some warping functions that go to zero at infinity, which means that the curves or hypersurfaces go to a point at infinity along the flow. In such a case, we prove the long-time existence of the flow and that the curvature and its higher-order derivatives go to zero along the flow.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102207"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524001001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study mean curvature flows in a warped product manifold defined by a closed Riemannian manifold and . In such a warped product manifold, we can define the notion of a graph, called a geodesic graph. We prove that the curve shortening flow preserves a geodesic graph for any warping function, and the mean curvature flow of hypersurfaces preserves a geodesic graph for some monotone convex warping functions. In particular, we consider some warping functions that go to zero at infinity, which means that the curves or hypersurfaces go to a point at infinity along the flow. In such a case, we prove the long-time existence of the flow and that the curvature and its higher-order derivatives go to zero along the flow.
我们研究由封闭黎曼流形和 R 定义的翘曲积流形中的平均曲率流。在这样的翘曲积流形中,我们可以定义一个图的概念,称为大地图。我们证明,对于任何翘曲函数,曲线缩短流都会保留大地图,而对于某些单调凸翘曲函数,超曲面的平均曲率流也会保留大地图。特别是,我们考虑了一些在无穷远处归零的翘曲函数,这意味着曲线或超曲面沿着流动在无穷远处归于一点。在这种情况下,我们证明了流的长期存在性,以及曲率及其高阶导数沿流归零。
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.