{"title":"Lower bounds for isoperimetric profiles and Yamabe constants","authors":"Juan Miguel Ruiz, Areli Vázquez Juárez","doi":"10.1016/j.difgeo.2023.102069","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102069","url":null,"abstract":"<div><p>We estimate explicit lower bounds for the isoperimetric profiles of the Riemannian product of a compact manifold and the Euclidean space with the flat metric, <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>+</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>></mo><mn>1</mn></math></span>. In particular, we introduce a lower bound for the isoperimetric profile of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for regions of large volume and we improve on previous estimates of lower bounds for the isoperimetric profiles of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We also discuss some applications of these results in order to improve known lower bounds for the Yamabe invariant of certain product manifolds.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102069"},"PeriodicalIF":0.5,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49749805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Classification of semi-parallel hypersurfaces of the product of two spheres","authors":"Shujie Zhai , Cheng Xing","doi":"10.1016/j.difgeo.2023.102067","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102067","url":null,"abstract":"<div><p>It is known that Mendonça and Tojeiro (2013) <span>[19]</span> have established a complete classification of parallel submanifolds in the product manifold <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>×</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup></math></span>, where <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span> (resp. <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup></math></span>) is an <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-dimensional (resp. <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-dimensional) real space form with constant curvature <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> (resp. <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>). In this paper, motivated by this result with considering further generalization, we study those semi-parallel hypersurfaces in case <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>=</mo><msubsup><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mo>=</mo><msubsup><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup></math></span> with <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>0</mn></math></span>. As the main result, we classify semi-parallel hypersurfaces of <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>×</mo><msubsup><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><m","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102067"},"PeriodicalIF":0.5,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49749638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gronwall's conjecture for 3-webs with two pencils of lines","authors":"Sergey I. Agafonov","doi":"10.1016/j.difgeo.2023.102071","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102071","url":null,"abstract":"<div><p>We prove the old-standing Gronwall conjecture in the particular case of linear 3-webs whose 2 foliations are 2 pencils of lines. For a non-hexagonal 3-web, we also introduce a family of projective torsion-free Cartan connections, the web leaves being geodesics for each member of the family, and give a web linearization criterion.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102071"},"PeriodicalIF":0.5,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49749800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pseudo-Conformal actions of the Möbius group","authors":"M. Belraouti , M. Deffaf , Y. Raffed , A. Zeghib","doi":"10.1016/j.difgeo.2023.102070","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102070","url":null,"abstract":"<div><p>We study compact connected pseudo-Riemannian manifolds <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> on which the conformal group <span><math><mi>Conf</mi><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> acts essentially and transitively. We prove, in particular, that if the non-compact semi-simple part of <span><math><mi>Conf</mi><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> is the Möbius group, then <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> is conformally flat.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102070"},"PeriodicalIF":0.5,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49758929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geometry and topology of manifolds with integral radial curvature bounds","authors":"Jing Mao","doi":"10.1016/j.difgeo.2023.102064","DOIUrl":"https://doi.org/10.1016/j.difgeo.2023.102064","url":null,"abstract":"<div><p>In this paper, we systematically investigate the geometry and topology of manifolds with integral <em>radial</em> curvature bounds, and obtain many interesting and important conclusions.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102064"},"PeriodicalIF":0.5,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49749636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Time analyticity for the parabolic type Schrödinger equation on Riemannian manifold with integral Ricci curvature condition","authors":"Wen Wang","doi":"10.1016/j.difgeo.2023.102045","DOIUrl":"10.1016/j.difgeo.2023.102045","url":null,"abstract":"<div><p>In the paper, we investigate the pointwise time analyticity of the parabolic type Schrödinger equation on a complete Riemannian manifold with integral Ricci curvature condition.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"90 ","pages":"Article 102045"},"PeriodicalIF":0.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47156979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oğul Esen , Manuel Lainz Valcázar , Manuel de León , Cristina Sardón
{"title":"Implicit contact dynamics and Hamilton-Jacobi theory","authors":"Oğul Esen , Manuel Lainz Valcázar , Manuel de León , Cristina Sardón","doi":"10.1016/j.difgeo.2023.102030","DOIUrl":"10.1016/j.difgeo.2023.102030","url":null,"abstract":"<div><p>In this paper, we introduce implicit Hamiltonian dynamics in the framework of contact geometry in two different ways: first, we introduce classical implicit Hamiltonian dynamics on a contact manifold, followed by evolution Hamiltonian dynamics. In the first case, implicit contact Hamiltonian dynamics is defined as a Legendrian submanifold of a tangent contact space, whilst the implicit evolution dynamic is understood as a Lagrangian submanifold of a certain symplectic space embedded into the tangent contact space. To conclude, we propose a geometric Hamilton-Jacobi theory for both of these formulations.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"90 ","pages":"Article 102030"},"PeriodicalIF":0.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49523002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geometry of cascade feedback linearizable control systems","authors":"Taylor J. Klotz","doi":"10.1016/j.difgeo.2023.102044","DOIUrl":"10.1016/j.difgeo.2023.102044","url":null,"abstract":"<div><p>Cascade feedback linearization provides geometric insights on explicit integrability of nonlinear control systems with symmetry. A central piece of the theory requires that the partial contact curve reduction of the contact sub-connection be static feedback linearizable. This work establishes new necessary conditions on the equations of Lie type - in the abelian case - that arise in a contact sub-connection with the desired static feedback linearizability property via families of codimension one partial contact curves. Furthermore, an explicit class of contact sub-connections admitting static feedback linearizable contact curve reductions is presented, hinting at a possible classification of all such contact sub-connections. Key tools in proving, and stating, the main results of this paper are truncated versions of the total derivative and Euler operators. Additionally, the Battilotti-Califano system with three inputs is used as a clarifying example of both cascade feedback linearization and the new necessary conditions.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"90 ","pages":"Article 102044"},"PeriodicalIF":0.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42535409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Riemannian exponential and quantization","authors":"J. Muñoz-Díaz, R.J. Alonso-Blanco","doi":"10.1016/j.difgeo.2023.102047","DOIUrl":"10.1016/j.difgeo.2023.102047","url":null,"abstract":"<div><p>This article continues and completes the previous one <span>[18]</span>. First of all, we present two methods of quantization associated with a linear connection given on a differentiable manifold, one of them being the one presented in <span>[18]</span>. The two methods allow quantization of functions that come from covariant tensor fields. The equivalence of both is demonstrated as a consequence of a remarkable property of the Riemannian exponential (<span>Theorem 5.1</span>) that, as far as we know, is new to the literature. In addition, we provide a characterization of the Schrödinger operators as the only ones that by quantization correspond to classical mechanical systems. Finally, it is shown that the extension of the above quantization to functions of a very broad type can be carried out by generalizing the method of <span>[18]</span> in terms of fields of distributions.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"90 ","pages":"Article 102047"},"PeriodicalIF":0.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42593781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the rigidity of the Sasakian structure and characterization of cosymplectic manifolds","authors":"Dhriti Sundar Patra , Vladimir Rovenski","doi":"10.1016/j.difgeo.2023.102043","DOIUrl":"10.1016/j.difgeo.2023.102043","url":null,"abstract":"<div><p>We introduce new metric structures on a smooth manifold (called “weak” structures) that generalize the almost contact, Sasakian, cosymplectic, etc. metric structures <span><math><mo>(</mo><mi>φ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> and allow us to take a fresh look at the classical theory and find new applications. This assertion is illustrated by generalizing several well-known results. It is proved that any Sasakian structure is rigid, i.e., our weak Sasakian structure is homothetically equivalent to a Sasakian structure. It is shown that a weak almost contact structure with parallel tensor <em>φ</em> is a weak cosymplectic structure and an example of such a structure on the product of manifolds is given. Conditions are found under which a vector field is a weak contact vector field.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"90 ","pages":"Article 102043"},"PeriodicalIF":0.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43180268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}