度量对和度量元组的格罗莫夫-豪斯多夫收敛性

IF 0.6 4区 数学 Q3 MATHEMATICS
Andrés Ahumada Gómez , Mauricio Che
{"title":"度量对和度量元组的格罗莫夫-豪斯多夫收敛性","authors":"Andrés Ahumada Gómez ,&nbsp;Mauricio Che","doi":"10.1016/j.difgeo.2024.102135","DOIUrl":null,"url":null,"abstract":"<div><p>We study the Gromov–Hausdorff convergence of metric pairs and metric tuples and prove the equivalence of different natural definitions of this concept. We also prove embedding, completeness and compactness theorems in this setting. Finally, we get a relative version of Fukaya's theorem about quotient spaces under Gromov–Hausdorff equivariant convergence and a version of Grove–Petersen–Wu's finiteness theorem for stratified spaces.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102135"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926224524000287/pdfft?md5=90e659088fe8f3dd0f018ed3d1606609&pid=1-s2.0-S0926224524000287-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Gromov–Hausdorff convergence of metric pairs and metric tuples\",\"authors\":\"Andrés Ahumada Gómez ,&nbsp;Mauricio Che\",\"doi\":\"10.1016/j.difgeo.2024.102135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the Gromov–Hausdorff convergence of metric pairs and metric tuples and prove the equivalence of different natural definitions of this concept. We also prove embedding, completeness and compactness theorems in this setting. Finally, we get a relative version of Fukaya's theorem about quotient spaces under Gromov–Hausdorff equivariant convergence and a version of Grove–Petersen–Wu's finiteness theorem for stratified spaces.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"94 \",\"pages\":\"Article 102135\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000287/pdfft?md5=90e659088fe8f3dd0f018ed3d1606609&pid=1-s2.0-S0926224524000287-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000287\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000287","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了度量对和度量元组的格罗莫夫-豪斯多夫收敛性,并证明了这一概念的不同自然定义的等价性。我们还证明了这种情况下的嵌入、完备性和紧凑性定理。最后,我们得到了 Fukaya 关于 Gromov-Hausdorff 等变收敛下商空间定理的一个相对版本,以及 Grove-Petersen-Wu 关于分层空间的有限性定理的一个版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gromov–Hausdorff convergence of metric pairs and metric tuples

We study the Gromov–Hausdorff convergence of metric pairs and metric tuples and prove the equivalence of different natural definitions of this concept. We also prove embedding, completeness and compactness theorems in this setting. Finally, we get a relative version of Fukaya's theorem about quotient spaces under Gromov–Hausdorff equivariant convergence and a version of Grove–Petersen–Wu's finiteness theorem for stratified spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信