{"title":"Gromov–Hausdorff convergence of metric pairs and metric tuples","authors":"Andrés Ahumada Gómez , Mauricio Che","doi":"10.1016/j.difgeo.2024.102135","DOIUrl":null,"url":null,"abstract":"<div><p>We study the Gromov–Hausdorff convergence of metric pairs and metric tuples and prove the equivalence of different natural definitions of this concept. We also prove embedding, completeness and compactness theorems in this setting. Finally, we get a relative version of Fukaya's theorem about quotient spaces under Gromov–Hausdorff equivariant convergence and a version of Grove–Petersen–Wu's finiteness theorem for stratified spaces.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102135"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926224524000287/pdfft?md5=90e659088fe8f3dd0f018ed3d1606609&pid=1-s2.0-S0926224524000287-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000287","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the Gromov–Hausdorff convergence of metric pairs and metric tuples and prove the equivalence of different natural definitions of this concept. We also prove embedding, completeness and compactness theorems in this setting. Finally, we get a relative version of Fukaya's theorem about quotient spaces under Gromov–Hausdorff equivariant convergence and a version of Grove–Petersen–Wu's finiteness theorem for stratified spaces.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.