代数几何

IF 0.6 4区 数学 Q3 MATHEMATICS
Hugo Cattarucci Botós
{"title":"代数几何","authors":"Hugo Cattarucci Botós","doi":"10.1016/j.difgeo.2024.102134","DOIUrl":null,"url":null,"abstract":"<div><p>We study geometric structures arising from Hermitian forms on linear spaces over real algebras beyond the division ones. Our focus is on the dual numbers, the split-complex numbers, and the split-quaternions. The corresponding geometric structures are employed to describe the spaces of oriented geodesics in the hyperbolic plane, the Euclidean plane, and the round 2-sphere. We also introduce a simple and natural geometric transition between these spaces. Finally, we present a projective model for the hyperbolic bidisc, that is, the Riemannian product of two hyperbolic discs.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102134"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry over algebras\",\"authors\":\"Hugo Cattarucci Botós\",\"doi\":\"10.1016/j.difgeo.2024.102134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study geometric structures arising from Hermitian forms on linear spaces over real algebras beyond the division ones. Our focus is on the dual numbers, the split-complex numbers, and the split-quaternions. The corresponding geometric structures are employed to describe the spaces of oriented geodesics in the hyperbolic plane, the Euclidean plane, and the round 2-sphere. We also introduce a simple and natural geometric transition between these spaces. Finally, we present a projective model for the hyperbolic bidisc, that is, the Riemannian product of two hyperbolic discs.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"94 \",\"pages\":\"Article 102134\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000275\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000275","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究实代数上线性空间上的赫米提形式所产生的几何结构,而不是除法结构。我们的重点是对偶数、分裂复数和分裂四元数。我们采用相应的几何结构来描述双曲面、欧几里得平面和圆 2 球中的定向大地空间。我们还介绍了这些空间之间简单自然的几何转换。最后,我们提出了双曲双圆盘的投影模型,即两个双曲圆盘的黎曼积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry over algebras

We study geometric structures arising from Hermitian forms on linear spaces over real algebras beyond the division ones. Our focus is on the dual numbers, the split-complex numbers, and the split-quaternions. The corresponding geometric structures are employed to describe the spaces of oriented geodesics in the hyperbolic plane, the Euclidean plane, and the round 2-sphere. We also introduce a simple and natural geometric transition between these spaces. Finally, we present a projective model for the hyperbolic bidisc, that is, the Riemannian product of two hyperbolic discs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信