On Finsler metrics with reversible Douglas curvature

IF 0.6 4区 数学 Q3 MATHEMATICS
Guangzu Chen , Jiayu Liao, Lihong Liu
{"title":"On Finsler metrics with reversible Douglas curvature","authors":"Guangzu Chen ,&nbsp;Jiayu Liao,&nbsp;Lihong Liu","doi":"10.1016/j.difgeo.2024.102137","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we find a new tensor which is responsible for Finsler metrics with reversible geodesics. Using this tensor, we can prove that Finsler metrics are Douglas metrics if and only if they have reversible geodesics and Douglas curvature. Further, we focus on Finsler metrics with reversible Douglas curvature.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102137"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000305","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we find a new tensor which is responsible for Finsler metrics with reversible geodesics. Using this tensor, we can prove that Finsler metrics are Douglas metrics if and only if they have reversible geodesics and Douglas curvature. Further, we focus on Finsler metrics with reversible Douglas curvature.

论具有可逆道格拉斯曲率的芬斯勒度量
在本文中,我们发现了一种新的张量,它是具有可逆测地线的 Finsler 度量的元凶。利用这个张量,我们可以证明,当且仅当 Finsler 度量具有可逆大地线和道格拉斯曲率时,它们才是道格拉斯度量。此外,我们还将重点讨论具有可逆道格拉斯曲率的芬斯勒度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信