{"title":"On Finsler metrics with reversible Douglas curvature","authors":"Guangzu Chen , Jiayu Liao, Lihong Liu","doi":"10.1016/j.difgeo.2024.102137","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we find a new tensor which is responsible for Finsler metrics with reversible geodesics. Using this tensor, we can prove that Finsler metrics are Douglas metrics if and only if they have reversible geodesics and Douglas curvature. Further, we focus on Finsler metrics with reversible Douglas curvature.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102137"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000305","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we find a new tensor which is responsible for Finsler metrics with reversible geodesics. Using this tensor, we can prove that Finsler metrics are Douglas metrics if and only if they have reversible geodesics and Douglas curvature. Further, we focus on Finsler metrics with reversible Douglas curvature.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.